Part Number Hot Search : 
A4810 B80NF 85103 2SC3502C MB506 MA3JP02F 24M05 IZ8138A
Product Description
Full Text Search
 

To Download AGLE3000V2-FFG896 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 v1.2
IGLOOe Low-Power Flash FPGAs
with Flash*Freeze Technology Features and Benefits
Low Power
1.2 V to 1.5 V Core Voltage Support for Low Power Supports Single-Voltage System Operation Low-Power Active FPGA Operation Flash*Freeze Technology Enables Ultra-Low Power Consumption while Maintaining FPGA Content * Flash*Freeze Pin Allows Easy Entry to / Exit from Ultra-LowPower Flash*Freeze Mode * * * *
(R)
Pro (Professional) I/O
* * * * * * * * * * * * * 700 Mbps DDR, LVDS-Capable I/Os 1.2 V, 1.5 V, 1.8 V, 2.5 V, and 3.3 V Mixed-Voltage Operation Bank-Selectable I/O Voltages--Up to 8 Banks per Chip Single-Ended I/O Standards: LVTTL, LVCMOS 3.3 V / 2.5 V / 1.8 V / 1.5 V / 1.2 V, 3.3 V PCI / 3.3 V PCI-X, and LVCMOS 2.5 V / 5.0 V Input Differential I/O Standards: LVPECL, LVDS, B-LVDS, and M-LVDS Voltage-Referenced I/O Standards: GTL+ 2.5 V / 3.3 V, GTL 2.5 V / 3.3 V, HSTL Class I and II, SSTL2 Class I and II, SSTL3 Class I and II I/O Registers on Input, Output, and Enable Paths Programmable Output Slew Rate and Drive Strength Programmable Input Delay Schmitt Trigger Option on Single-Ended Inputs Weak Pull-Up/-Down IEEE 1149.1 (JTAG) Boundary Scan Test Pin-Compatible Packages across the IGLOO(R)e Family
High Capacity
* 600 k to 3 Million System Gates * 108 to 504 kbits of True Dual-Port SRAM * Up to 620 User I/Os
Reprogrammable Flash Technology
* * * * 130-nm, 7-Layer Metal (6 Copper), Flash-Based CMOS Process Live-at-Power-Up (LAPU) Level 0 Support Single-Chip Solution Retains Programmed Design when Powered Off
In-System Programming (ISP) and Security
* Secure ISP Using On-Chip 128-Bit Advanced Encryption Standard (AES) Decryption via JTAG (IEEE 1532-compliant) * FlashLock(R) to Secure FPGA Contents
Clock Conditioning Circuit (CCC) and PLL
* Six CCC Blocks, Each with an Integrated PLL * Configurable Phase Shift, Multiply/Divide, Delay Capabilities, and External Feedback * Wide Input Frequency Range (1.5 MHz up to 250 MHz)
High-Performance Routing Hierarchy
* Segmented, Hierarchical Routing and Clock Structure * High-Performance, Low-Skew Global Network * Architecture Supports Ultra-High Utilization
Embedded Memory
* 1 kbit of FlashROM User Nonvolatile Memory * SRAMs and FIFOs with Variable-Aspect-Ratio 4,608-Bit RAM Blocks (x1, x2, x4, x9, and x18 organizations available) * True Dual-Port SRAM (except x18)
ARM Processor Support in IGLOOe FPGAs
* M1 IGLOOe Devices--CortexTM-M1 Soft Processor Available with or without Debug
IGLOOe Product Family
IGLOOe Devices ARM-Enabled IGLOOe Devices System Gates VersaTiles (D-flip-flops) Quiescent Current (typical) in Flash*Freeze Mode (W) RAM kbits (1,024 bits) 4,608-Bit Blocks FlashROM Bits Secure (AES) ISP CCCs with Integrated PLLs VersaNet I/O Banks Maximum User I/Os Package Pins FBGA Globals1 600 k 13,824 49 108 24 1k Yes 6 18 8 270 FG256, FG484 AGLE600 AGLE3000 M1AGLE3000 3M 75,264 137 504 112 1k Yes 6 18 8 620 FG484, FG896
Notes: 1. Refer to the Cortex-M1 Handbook for more information. 2. Six chip (main) and twelve quadrant global networks are available. 3. For devices supporting lower densities, refer to the IGLOO Low-Power Flash FPGAs with Flash*Freeze Technology handbook.
October 2008 (c) 2008 Actel Corporation
I
I/Os Per Package1
IGLOOe Devices ARM-Enabled IGLOOe Devices I/O Types Package FG256 FG484 FG896 Notes: 1. When considering migrating your design to a lower- or higher-density device, refer to the IGLOOe Low-Power Flash FPGAs with Flash*Freeze Technology handbook to ensure compliance with design and board migration requirements. 2. Each used differential I/O pair reduces the number of single-ended I/Os available by two. 3. For AGLE3000 devices, the usage of certain I/O standards is limited as follows: - SSTL3(I) and (II): up to 40 I/Os per north or south bank - LVPECL / GTL+ 3.3 V / GTL 3.3 V: up to 48 I/Os per north or south bank - SSTL2(I) and (II) / GTL+ 2.5 V/ GTL 2.5 V: up to 72 I/Os per north or south bank 4. FG256 and FG484 are footprint-compatible packages. 5. When using voltage-referenced I/O standards, one I/O pin should be assigned as a voltage-referenced pin (VREF) per minibank (group of I/Os). When the Flash*Freeze pin is used to directly enable Flash*Freeze mode and not as a regular I/O, the number of single-ended user I/Os available is reduced by one. 6. When the Flash*Freeze pin is used to directly enable Flash*Freeze mode and not as a regular I/O, the number of singleended user I/Os available is reduced by one. 7. "G" indicates RoHS-compliant packages. Refer to "IGLOOe Ordering Information" on page III for the location of the "G" in the part number. IGLOOe FPGAs Package Sizes Dimensions Package Length x Width (mm x mm) Nominal Area (mm Pitch (mm) Height (mm)
2)
AGLE600
AGLE3000 M1AGLE3000
Single-Ended I/O1 165 270 -
Differential I/O Pairs 79 135 -
Single-Ended I/O1 - 341 620
Differential I/O Pairs - 168 310
FG256 17 x 17 289 1 1.6
FG484 23 x 23 529 1 2.23
FG896 31 x 31 961 1 2.23
II
v1.2
IGLOOe Low-Power Flash FPGAs
IGLOOe Ordering Information
AGLE3000
V2
_
FG
G
896
I Application (Temperature Range) Blank = Commercial (0C to +70C Ambient Temperature) I = Industrial (-40C to +85C Ambient Temperature) PP = Pre-Production ES = Engineering Sample (Room Temperature Only) Package Lead Count
Lead-Free Packaging Blank = Standard Packaging G = RoHS-Compliant Packaging Package Type FG = Fine Pitch Ball Grid Array (1.0 mm pitch) Speed Grade F = 20% Slower than Standard* Blank = Standard
Supply Voltage 2 = 1.2 V to 1.5 V 5 = 1.5 V only
Part Number IGLOOe Devices AGLE600 = 600,000 System Gates AGLE3000 = 3,000,000 System Gates IGLOOe Devices with Cortex-M1 M1AGLE3000 = 3,000,000 System Gates
Notes: 1. Marking Information: IGLOO V2 devices do not have V2 marking, but IGLOO V5 devices are marked accordingly. 2. The DC and switching characteristics for the -F speed grade targets are based only on simulation. The characteristics provided for the -F speed grade are subject to change after establishing FPGA specifications. Some restrictions might be added and will be reflected in future revisions of this document. The -F speed grade is only supported in the commercial temperature range.
v1.2
III
Temperature Grade Offerings
AGLE600 Package FG256 FG484 FG896 C, I C, I - AGLE3000 M1AGLPE3000 - C, I C, I
Note: C = Commercial temperature range: 0C to 70C ambient temperature. I = Industrial temperature range: -40C to 85C ambient temperature.
Speed Grade and Temperature Grade Matrix
Temperature Grade C2 I
3
-F 1
Std.
-

Notes: 1. The characteristics provided for the -F speed grade are subject to change after establishing FPGA specifications. Some restrictions might be added and will be reflected in future revisions of this document. The -F speed grade is only supported in the commercial temperature range. 2. C = Commercial temperature range: 0C to 70C ambient temperature. 3. I = Industrial temperature range: -40C to 85C ambient temperature. References made to IGLOOe devices also apply to ARM-enabled IGLOOe devices. The ARM-enabled part numbers start with M1 (Cortex-M1). Contact your local Actel representative for device availability: http://www.actel.com/contact/default.aspx.
IV
v1.2
1 - IGLOOe Device Family Overview
General Description
The IGLOOe family of flash FPGAs, based on a 130-nm flash process, offers the lowest power FPGA, a single-chip solution, small footprint packages, reprogrammability, and an abundance of advanced features. The Flash*Freeze technology used in IGLOOe devices enables entering and exiting an ultra-lowpower mode while retaining SRAM and register data. Flash*Freeze technology simplifies power management through I/O and clock management with rapid recovery to operation mode. The Low Power Active capability (static idle) allows for ultra-low-power consumption while the IGLOOe device is completely functional in the system. This allows the IGLOOe device to control system power management based on external inputs (e.g., scanning for keyboard stimulus) while consuming minimal power. Nonvolatile flash technology gives IGLOOe devices the advantage of being a secure, low power, single-chip solution that is live at power-up (LAPU). IGLOOe is reprogrammable and offers time-tomarket benefits at an ASIC-level unit cost. These features enable designers to create high-density systems using existing ASIC or FPGA design flows and tools. IGLOOe devices offer 1 kbit of on-chip, programmable, nonvolatile FlashROM storage as well as clock conditioning circuitry based on 6 integrated phase-locked loops (PLLs). IGLOOe devices have up to 3 million system gates, supported with up to 504 kbits of true dual-port SRAM and up to 620 user I/Os. M1 IGLOOe devices support the high-performance, 32-bit Cortex-M1 processor developed by ARM for implementation in FPGAs. Cortex-M1 is a soft processor that is fully implemented in the FPGA fabric. It has a three-stage pipeline that offers a good balance between low-power consumption and speed when implemented in an M1 IGLOOe device. The processor runs the ARMv6-M instruction set, has a configurable nested interrupt controller, and can be implemented with or without the debug block. Cortex-M1 is available for free from Actel for use in M1 IGLOOe FPGAs. The ARM-enabled devices have Actel ordering numbers that begin with M1AGLE and do not support AES decryption.
Flash*Freeze Technology
The IGLOOe device offers unique Flash*Freeze technology, allowing the device to enter and exit ultra-low-power Flash*Freeze mode. IGLOOe devices do not need additional components to turn off I/Os or clocks while retaining the design information, SRAM content, and registers. Flash*Freeze technology is combined with in-system programmability, which enables users to quickly and easily upgrade and update their designs in the final stages of manufacturing or in the field. The ability of IGLOOe V2 devices to support a wide range of core voltage (1.2 V to 1.5 V) allows further reduction in power consumption, thus achieving the lowest total system power. When the IGLOOe device enters Flash*Freeze mode, the device automatically shuts off the clocks and inputs to the FPGA core; when the device exits Flash*Freeze mode, all activity resumes and data is retained. The availability of low-power modes, combined with reprogrammability, a single-chip and singlevoltage solution, and availability of small-footprint, high pin-count packages, make IGLOOe devices the best fit for portable electronics.
v1.2
1-1
IGLOOe Device Family Overview
Flash Advantages
Low Power
Flash-based IGLOOe devices exhibit power characteristics similar to those of an ASIC, making them an ideal choice for power-sensitive applications. IGLOOe devices have only a very limited power-on current surge and no high-current transition period, both of which occur on many FPGAs. IGLOOe devices also have low dynamic power consumption to further maximize power savings; power is even further reduced by the use of a 1.2 V core voltage. Low dynamic power consumption, combined with low static power consumption and Flash*Freeze technology, gives the IGLOOe device the lowest total system power offered by any FPGA.
Security
The nonvolatile, flash-based IGLOOe devices do not require a boot PROM, so there is no vulnerable external bitstream that can be easily copied. IGLOOe devices incorporate FlashLock, which provides a unique combination of reprogrammability and design security without external overhead, advantages that only an FPGA with nonvolatile flash programming can offer. IGLOOe devices utilize a 128-bit flash-based lock and a separate AES key to secure programmed intellectual property and configuration data. In addition, all FlashROM data in IGLOOe devices can be encrypted prior to loading, using the industry-leading AES-128 (FIPS192) bit block cipher encryption standard. AES was adopted by the National Institute of Standards and Technology (NIST) in 2000 and replaces the 1977 DES standard. IGLOOe devices have a built-in AES decryption engine and a flash-based AES key that make them the most comprehensive programmable logic device security solution available today. IGLOOe devices with AES-based security allow for secure, remote field updates over public networks such as the Internet, and ensure that valuable IP remains out of the hands of system overbuilders, system cloners, and IP thieves. The contents of a programmed IGLOOe device cannot be read back, although secure design verification is possible. Security, built into the FPGA fabric, is an inherent component of the IGLOOe family. The flash cells are located beneath seven metal layers, and many device design and layout techniques have been used to make invasive attacks extremely difficult. The IGLOOe family, with FlashLock and AES security, is unique in being highly resistant to both invasive and noninvasive attacks. Your valuable IP is protected and secure, making remote ISP possible. An IGLOOe device provides the most impenetrable security for programmable logic designs.
Single Chip
Flash-based FPGAs store their configuration information in on-chip flash cells. Once programmed, the configuration data is an inherent part of the FPGA structure, and no external configuration data needs to be loaded at system power-up (unlike SRAM-based FPGAs). Therefore, flash-based IGLOOe FPGAs do not require system configuration components such as EEPROMs or microcontrollers to load device configuration data. This reduces bill-of-materials costs and PCB area, and increases security and system reliability.
Live at Power-Up
The Actel flash-based IGLOOe devices support Level 0 of the LAPU classification standard. This feature helps in system component initialization, execution of critical tasks before the processor wakes up, setup and configuration of memory blocks, clock generation, and bus activity management. The LAPU feature of flash-based IGLOOe devices greatly simplifies total system design and reduces total system cost, often eliminating the need for CPLDs and clock generation PLLs. In addition, glitches and brownouts in system power will not corrupt the IGLOOe device's flash configuration, and unlike SRAM-based FPGAs, the device will not have to be reloaded when system power is restored. This enables the reduction or complete removal of the configuration PROM, expensive voltage monitor, brownout detection, and clock generator devices from the PCB design. Flash-based IGLOOe devices simplify total system design and reduce cost and design risk while increasing system reliability and improving system initialization time.
1 -2
v1.2
IGLOOe Low-Power Flash FPGAs
Reduced Cost of Ownership
Advantages to the designer extend beyond low unit cost, performance, and ease of use. Unlike SRAM-based FPGAs, Flash-based IGLOOe devices allow all functionality to be live at power-up; no external boot PROM is required. On-board security mechanisms prevent access to all the programming information and enable secure remote updates of the FPGA logic. Designers can perform secure remote in-system reprogramming to support future design iterations and field upgrades with confidence that valuable intellectual property cannot be compromised or copied. Secure ISP can be performed using the industry-standard AES algorithm. The IGLOOe family device architecture mitigates the need for ASIC migration at higher user volumes. This makes the IGLOOe family a cost-effective ASIC replacement solution, especially for applications in the consumer, networking/communications, computing, and avionics markets.
Firm-Error Immunity
Firm errors occur most commonly when high-energy neutrons, generated in the upper atmosphere, strike a configuration cell of an SRAM FPGA. The energy of the collision can change the state of the configuration cell and thus change the logic, routing, or I/O behavior in an unpredictable way. These errors are impossible to prevent in SRAM FPGAs. The consequence of this type of error can be a complete system failure. Firm errors do not exist in the configuration memory of IGLOOe flashbased FPGAs. Once it is programmed, the flash cell configuration element of IGLOOe FPGAs cannot be altered by high-energy neutrons and is therefore immune to them. Recoverable (or soft) errors occur in the user data SRAM of all FPGA devices. These can easily be mitigated by using error detection and correction (EDAC) circuitry built into the FPGA fabric.
Advanced Flash Technology
The IGLOOe family offers many benefits, including nonvolatility and reprogrammability, through an advanced flash-based, 130-nm LVCMOS process with seven layers of metal. Standard CMOS design techniques are used to implement logic and control functions. The combination of fine granularity, enhanced flexible routing resources, and abundant flash switches allows for very high logic utilization without compromising device routability or performance. Logic functions within the device are interconnected through a four-level routing hierarchy. IGLOOe family FPGAs utilize design and process techniques to minimize power consumption in all modes of operation.
Advanced Architecture
The proprietary IGLOOe architecture provides granularity comparable to standard-cell ASICs. The IGLOOe device consists of five distinct and programmable architectural features (Figure 1-1 on page 4): * * * * * * Flash*Freeze technology FPGA VersaTiles Dedicated FlashROM Dedicated SRAM/FIFO memory Extensive CCCs and PLLs Pro I/O structure
The FPGA core consists of a sea of VersaTiles. Each VersaTile can be configured as a three-input logic function, a D-flip-flop (with or without enable), or a latch by programming the appropriate flash switch interconnections. The versatility of the IGLOOe core tile as either a three-input lookup table (LUT) equivalent or a D-flip-flop/latch with enable allows for efficient use of the FPGA fabric. The VersaTile capability is unique to the Actel ProASIC(R) family of third-generation-architecture flash FPGAs. VersaTiles are connected with any of the four levels of routing hierarchy. Flash switches are distributed throughout the device to provide nonvolatile, reconfigurable interconnect programming. Maximum core utilization is possible for virtually any design.
v1.2
1-3
IGLOOe Device Family Overview In addition, extensive on-chip programming circuitry allows for rapid, single-voltage (3.3 V) programming of IGLOOe devices via an IEEE 1532 JTAG interface.
CCC RAM Block 4,608-Bit Dual-Port SRAM or FIFO Block
Pro I/Os
VersaTile RAM Block 4,608-Bit Dual-Port SRAM or FIFO Block
ISP AES Decryption*
User Nonvolatile FlashRom
Flash*Freeze Technology
Charge Pumps
Figure 1-1 * IGLOOe Device Architecture Overview
Flash*Freeze Technology
The IGLOOe device has an ultra-low power static mode, called Flash*Freeze mode, which retains all SRAM and register information and can still quickly return to normal operation. Flash*Freeze technology enables the user to quickly (within 1 s) enter and exit Flash*Freeze mode by activating the Flash*Freeze pin while all power supplies are kept at their original values. In addition, I/Os and global I/Os can still be driven and can be toggling without impact on power consumption, clocks can still be driven or can be toggling without impact on power consumption, and the device retains all core registers, SRAM information, and states. I/O states are tristated during Flash*Freeze mode or can be set to a certain state using weak pull-up or pull-down I/O attribute configuration. No power is consumed by the I/O banks, clocks, JTAG pins, or PLL in this mode. Flash*Freeze technology allows the user to switch to active mode on demand, thus simplifying the power management of the device. The Flash*Freeze pin (active low) can be routed internally to the core to allow the user's logic to decide when it is safe to transition to this mode. It is also possible to use the Flash*Freeze pin as a regular I/O if Flash*Freeze mode usage is not planned, which is advantageous because of the
1 -4
v1.2
IGLOOe Low-Power Flash FPGAs inherent low power static and dynamic capabilities of the IGLOOe device. Refer to Figure 1-2 for an illustration of entering/exiting Flash*Freeze mode.
Flash*Freeze Mode Control
Actel IGLOOe FPGA
Flash*Freeze Pin
Figure 1-2 * IGLOOe Flash*Freeze Mode
VersaTiles
The IGLOOe core consists of VersaTiles, which have been enhanced beyond the ProASICPLUS(R) core tiles. The IGLOOe VersaTile supports the following: * * * * All 3-input logic functions--LUT-3 equivalent Latch with clear or set D-flip-flop with clear or set Enable D-flip-flop with clear or set
Refer to Figure 1-3 for VersaTile configurations.
LUT-3 Equivalent X1 X2 X3
D-Flip-Flop with Clear or Set Data CLK CLR Y D-FF
Enable D-Flip-Flop with Clear or Set Data CLK Enable CLR D-FF Y
LUT-3
Y
Figure 1-3 * VersaTile Configurations
User Nonvolatile FlashROM
Actel IGLOOe devices have 1 kbit of on-chip, user-accessible, nonvolatile FlashROM. The FlashROM can be used in diverse system applications: * * * * * * * * Internet protocol addressing (wireless or fixed) System calibration settings Device serialization and/or inventory control Subscription-based business models (for example, set-top boxes) Secure key storage for secure communications algorithms Asset management/tracking Date stamping Version management
The FlashROM is written using the standard IGLOOe IEEE 1532 JTAG programming interface. The core can be individually programmed (erased and written), and on-chip AES decryption can be used selectively to securely load data over public networks, as in security keys stored in the FlashROM for a user design.
v1.2
1-5
IGLOOe Device Family Overview The FlashROM can be programmed via the JTAG programming interface, and its contents can be read back either through the JTAG programming interface or via direct FPGA core addressing. Note that the FlashROM can only be programmed from the JTAG interface and cannot be programmed from the internal logic array. The FlashROM is programmed as 8 banks of 128 bits; however, reading is performed on a byte-bybyte basis using a synchronous interface. A 7-bit address from the FPGA core defines which of the 8 banks and which of the 16 bytes within that bank are being read. The three most significant bits (MSBs) of the FlashROM address determine the bank, and the four least significant bits (LSBs) of the FlashROM address define the byte. The Actel IGLOOe development software solutions, Libero(R) Integrated Design Environment (IDE) and Designer, have extensive support for the FlashROM. One such feature is auto-generation of sequential programming files for applications requiring a unique serial number in each part. Another feature allows the inclusion of static data for system version control. Data for the FlashROM can be generated quickly and easily using Actel Libero IDE and Designer software tools. Comprehensive programming file support is also included to allow for easy programming of large numbers of parts with differing FlashROM contents.
SRAM and FIFO
IGLOOe devices have embedded SRAM blocks along their north and south sides. Each variableaspect-ratio SRAM block is 4,608 bits in size. Available memory configurations are 256x18, 512x9, 1kx4, 2kx2, and 4kx1 bits. The individual blocks have independent read and write ports that can be configured with different bit widths on each port. For example, data can be sent through a 4-bit port and read as a single bitstream. The embedded SRAM blocks can be initialized via the device JTAG port (ROM emulation mode) using the UJTAG macro. In addition, every SRAM block has an embedded FIFO control unit. The control unit allows the SRAM block to be configured as a synchronous FIFO without using additional core VersaTiles. The FIFO width and depth are programmable. The FIFO also features programmable Almost Empty (AEMPTY) and Almost Full (AFULL) flags in addition to the normal Empty and Full flags. The embedded FIFO control unit contains the counters necessary for generation of the read and write address pointers. The embedded SRAM/FIFO blocks can be cascaded to create larger configurations.
PLL and CCC
IGLOOe devices provide designers with very flexible clock conditioning capabilities. Each member of the IGLOOe family contains six CCCs, each with an integrated PLL. The six CCC blocks are located at the four corners and the centers of the east and west sides. One CCC (center west side) has a PLL. The inputs of the six CCC blocks are accessible from the FPGA core or from one of several inputs located near the CCC that have dedicated connections to the CCC block. The CCC block has these key features: * * * * * * * * * * Wide input frequency range (fIN_CCC) = 1.5 MHz up to 250 MHz Output frequency range (fOUT_CCC) = 0.75 MHz up to 250 MHz 2 programmable delay types for clock skew minimization Clock frequency synthesis Internal phase shift = 0, 90, 180, and 270. Output phase shift depends on the output divider configuration. Output duty cycle = 50% 1.5% or better Low output jitter: worst case < 2.5% x clock period peak-to-peak period jitter when single global network used Maximum acquisition time is 300 s Exceptional tolerance to input period jitter--allowable input jitter is up to 1.5 ns Four precise phases; maximum misalignment between adjacent phases of 40 ps x 250 MHz / fOUT_CCC
Additional CCC specifications:
1 -6
v1.2
IGLOOe Low-Power Flash FPGAs
Global Clocking
IGLOOe devices have extensive support for multiple clocking domains. In addition to the CCC and PLL support described above, there is a comprehensive global clock distribution network. Each VersaTile input and output port has access to nine VersaNets: six chip (main) and three quadrant global networks. The VersaNets can be driven by the CCC or directly accessed from the core via multiplexers (MUXes). The VersaNets can be used to distribute low-skew clock signals or for rapid distribution of high-fanout nets.
Pro I/Os with Advanced I/O Standards
The IGLOOe family of FPGAs features a flexible I/O structure, supporting a range of voltages (1.2 V, 1.5 V, 1.8 V, 2.5 V, and 3.3 V). IGLOOe FPGAs support 19 different I/O standards, including singleended, differential, and voltage-referenced. The I/Os are organized into banks, with eight banks per device (two per side). The configuration of these banks determines the I/O standards supported. Each I/O bank is subdivided into VREF minibanks, which are used by voltage-referenced I/Os. VREF minibanks contain 8 to 18 I/Os. All the I/Os in a given minibank share a common VREF line. Therefore, if any I/O in a given VREF minibank is configured as a VREF pin, the remaining I/Os in that minibank will be able to use that reference voltage. Each I/O module contains several input, output, and enable registers. These registers allow the implementation of the following: * Single-Data-Rate applications (e.g., PCI 66 MHz, bidirectional SSTL 2 and 3, Class I and II) Double-Data-Rate applications (e.g., DDR LVDS, B-LVDS, and M-LVDS I/Os for point-to-point communications, and DDR 200 MHz SRAM using bidirectional HSTL Class II). IGLOOe banks support M-LVDS with 20 multi-drop points.
v1.2
1-7
IGLOOe Device Family Overview
Part Number and Revision Date
Part Number 51700096-001-3 Revised October 2008
List of Changes
The following table lists critical changes that were made in the current version of the document. Previous Version v1.1 (June 2008) v1.0 (April 2008) 51700096-001-1 (March 2008) Changes in Current Version (v1.2) The Quiescent Current values in the "IGLOOe Product Family" table were updated. As a result of the Libero IDE v8.4 release, Actel now offers a wide range of core voltage support. The document was updated to change 1.2 V / 1.5 V to 1.2 V to 1.5 V. This document was divided into two sections and given a version number, starting at v1.0. The first section of the document includes features, benefits, ordering information, and temperature and speed grade offerings. The second section is a device family overview. The "Low Power" section was updated to change "1.2 V and 1.5 V Core Voltage" to "1.2 V and 1.5 V Core and I/O Voltage." The text "(from 25 W)" was removed from "Low-Power Active FPGA Operation." 1.2_V was added to the list of core and I/O voltages in the "Pro (Professional) I/O" and "Pro I/Os with Advanced I/O Standards" sections. Advance v0.4 (December 2007) Advance v0.3 (September 2007) This document was previously in datasheet Advance v0.4. As a result of moving to the handbook format, Actel has restarted the version numbers. The new version number is 51700096-001-0. Table 1 * IGLOOe Product Family was updated to change the maximum number of user I/Os for AGLE3000. Table 2 * IGLOOe FPGAs Package Sizes Dimensions is new. Package dimensions were removed from the "I/Os Per Package1" table. The number of I/Os was updated for FG896. A note regarding marking information was added to "IGLOOe Ordering Information". Advance v0.2 (July 2007) Advance v0.1 Page I N/A
N/A
51700096-001-0 (January 2008)
I
I, 1-7 N/A
i ii
iii
Cortex-M1 device information was added to Cortex-M1 device information i, ii, iii, iv was added to Table 1 * IGLOOe Product Family, the "I/Os Per Package1" table, "IGLOOe Ordering Information", and Temperature Grade Offerings. The words "ambient temperature" were added to the temperature range in the "IGLOOe Ordering Information", "Temperature Grade Offerings", and "Speed Grade and Temperature Grade Matrix" sections. iii, iv
1 -8
v1.2
IGLOOe Low-Power Flash FPGAs
Datasheet Categories
Categories
In order to provide the latest information to designers, some datasheets are published before data has been fully characterized. Datasheets are designated as "Product Brief," "Advance," "Preliminary," and "Production." The definition of these categories are as follows:
Product Brief
The product brief is a summarized version of a datasheet (advance or production) and contains general product information. This document gives an overview of specific device and family information.
Advance
This version contains initial estimated information based on simulation, other products, devices, or speed grades. This information can be used as estimates, but not for production. This label only applies to the DC and Switching Characteristics chapter of the datasheet and will only be used when the data has not been fully characterized.
Preliminary
The datasheet contains information based on simulation and/or initial characterization. The information is believed to be correct, but changes are possible.
Unmarked (production)
This version contains information that is considered to be final.
Export Administration Regulations (EAR)
The products described in this document are subject to the Export Administration Regulations (EAR). They could require an approved export license prior to export from the United States. An export includes release of product or disclosure of technology to a foreign national inside or outside the United States.
Actel Safety Critical, Life Support, and High-Reliability Applications Policy
The Actel products described in this advance status document may not have completed Actel's qualification process. Actel may amend or enhance products during the product introduction and qualification process, resulting in changes in device functionality or performance. It is the responsibility of each customer to ensure the fitness of any Actel product (but especially a new product) for a particular purpose, including appropriateness for safety-critical, life-support, and other high-reliability applications. Consult Actel's Terms and Conditions for specific liability exclusions relating to life-support applications. A reliability report covering all of Actel's products is available on the Actel website at http://www.actel.com/documents/ORT_Report.pdf. Actel also offers a variety of enhanced qualification and lot acceptance screening procedures. Contact your local Actel sales office for additional reliability information.
v1.2
1-9
2 - IGLOOe DC and Switching Characteristics
General Specifications
DC and switching characteristics for -F speed grade targets are based only on simulation. The characteristics provided for the -F speed grade are subject to change after establishing FPGA specifications. Some restrictions might be added and will be reflected in future revisions of this document. The -F speed grade is only supported in the commercial temperature range.
Operating Conditions
Stresses beyond those listed in Table 2-1 may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Absolute Maximum Ratings are stress ratings only; functional operation of the device at these or any other conditions beyond those listed under the Recommended Operating Conditions specified in Table 2-2 on page 2-2 is not implied. Table 2-1 * Symbol VCC VJTAG VPUMP VCCPLL VCCI and VMV 3 VI Absolute Maximum Ratings Parameter DC core supply voltage JTAG DC voltage Programming voltage Analog power supply (PLL) DC I/O buffer supply voltage Limits -0.3 to 1.65 -0.3 to 3.75 -0.3 to 3.75 -0.3 to 1.65 -0.3 to 3.75 Units V V V V V
I/O input voltage
-0.3 V to 3.6 V (when I/O hot insertion mode is enabled) -0.3 V to (VCCI + 1 V) or 3.6 V, whichever voltage is lower (when I/O hot-insertion mode is disabled) -65 to +150 +125
V
TSTG 2 TJ
2
Storage temperature Junction temperature
C C
Notes: 1. The device should be operated within the limits specified by the datasheet. During transitions, the input signal may undershoot or overshoot according to the limits shown in Table 2-4 on page 2-3. 2. For flash programming and retention maximum limits, refer to Table 2-3 on page 2-2, and for recommended operating limits, refer to Table 2-2 on page 2-2. 3. VMV pins must be connected to the corresponding VCCI pins. See Pin Descriptions for further information.
A dv a n c e v 0. 3
2-1
IGLOOe DC and Switching Characteristics Table 2-2 * Symbol TA TJ VCC Ambient Temperature Junction Temperature 1.5 V DC voltage1 core
8
Recommended Operating Conditions 4 Parameter Commercial 0 to +70
6
Industrial -40 to +85
7
Units C
0 to + 85 1.425 to 1.575 1.14 to 1.575 1.4 to 3.6 Programming Mode Operation3
1
-40 to +100 1.425 to 1.575 1.14 to 1.575 1.4 to 3.6 3.15 to 3.45 0 to 3.45 1.4 to 1.6 1.14 to 1.575 1.14 to 1.26 1.425 to 1.575 1.7 to 1.9 2.3 to 2.7 3.0 to 3.6 2.375 to 2.625 3.0 to 3.6 V V V V V V V V V V V V V
supply
1.2 V-1.5 V wide range core voltage2 VJTAG VPUMP 5 VCCPLL
9
JTAG DC voltage Programming voltage
3.15 to 3.45 0 to 3.45 1.4 to 1.6 1.14 to 1.575 1.14 to 1.26 1.425 to 1.575 1.7 to 1.9 2.3 to 2.7 3.0 to 3.6 2.375 to 2.625 3.0 to 3.6
Analog power supply (PLL)
1.5 V DC core supply voltage
1.2 V-1.5 V wide range core voltage2 VCCI and 1.2 V DC supply voltage2 VMV 10 1.5 V DC supply voltage 1.8 V DC supply voltage 2.5 V DC supply voltage 3.3 V DC supply voltage LVDS differential I/O LVPECL differential I/O Notes: 1. For IGLOOe V5 devices 2. For IGLOOe V2 devices only, operating at VCCI VCC
3. The ranges given here are for power supplies only. The recommended input voltage ranges specific to each I/O standard are given in Table 2-20 on page 2-20. VCCI should be at the same voltage within a given I/O bank. 4. All parameters representing voltages are measured with respect to GND unless otherwise specified. 5. VPUMP can be left floating during operation (not programming mode). 6. Maximum TJ = 85 C. 7. Maximum TJ = 100 C. 8. To ensure targeted reliability standards are met across ambient and junction operating temperatures, Actel recommends that the user follow best design practices using Actel's timing and power simulation tools. 9. VCCPLL pins should be tied to VCC pins. See Pin Descriptions for further information. 10. VMV pins must be connected to the corresponding VCCI pins. See Pin Descriptions for further information. Table 2-3 * Flash Programming Limits - Retention, Storage, and Operating Temperature1 Programming Program Retention Cycles (biased/unbiased) 500 500 20 years 20 years Maximum Storage Temperature TSTG (C) 2 110 110 Maximum Operating Junction Temperature TJ (C) 2 100 100
Product Grade Commercial Industrial Notes:
1. This is a stress rating only; functional operation at any condition other than those indicated is not implied. 2. These limits apply for program/data retention only. Refer to Table 2-1 on page 2-1 and Table 2-2 for device operating conditions and absolute limits.
2 -2
A dv a n c e v 0. 3
IGLOOe DC and Switching Characteristics Table 2-4 * VCCI 2.7 V or less 3V 3.3 V 3.6 V Notes: 1. Based on reliability requirements at junction temperature at 85C. 2. The duration is allowed at one out of six clock cycles. If the overshoot/undershoot occurs at one out of two cycles, the maximum overshoot/undershoot has to be reduced by 0.15 V. 3. The device meets overshoot/undershoot specification requirements for PCI inputs with VCCI = 3.45 V at 85C maximum, whereas the average toggling of inputs at one-sixth of PCI frequency is considered. Overshoot and Undershoot Limits 1 Average VCCI-GND Overshoot or Undershoot Duration as a Percentage of Clock Cycle2 10% 5% 10% 5% 10% 5% 10% 5% Maximum Overshoot/ Undershoot2 1.4 V 1.49 V 1.1 V 1.19 V 0.79 V 0.88 V 0.45 V 0.54 V
I/O Power-Up and Supply Voltage Thresholds for Power-On Reset (Commercial and Industrial)
Sophisticated power-up management circuitry is designed into every IGLOOe device. These circuits ensure easy transition from the powered-off state to the powered-up state of the device. The many different supplies can power up in any sequence with minimized current spikes or surges. In addition, the I/O will be in a known state through the power-up sequence. The basic principle is shown in Figure 2-1 on page 2-4 and Figure 2-2 on page 2-5. There are five regions to consider during power-up. IGLOOe I/Os are activated only if ALL of the following three conditions are met: 1. VCC and VCCI are above the minimum specified trip points (Figure 2-1 on page 2-4 and Figure 2-2 on page 2-5). 2. VCCI > VCC - 0.75 V (typical) 3. Chip is in the operating mode. VCCI Trip Point: Ramping up: 0.6 V < trip_point_up < 1.2 V Ramping down: 0.5 V < trip_point_down < 1.1 V VCC Trip Point: Ramping up: 0.6 V < trip_point_up < 1.1 V Ramping down: 0.5 V < trip_point_down < 1 V VCC and VCCI ramp-up trip points are about 100 mV higher than ramp-down trip points. This specifically built-in hysteresis prevents undesirable power-up oscillations and current surges. Note the following: * * During programming, I/Os become tristated and weakly pulled up to VCCI. JTAG supply, PLL power supplies, and charge pump VPUMP supply have no influence on I/O behavior.
A dv a n c e v 0. 3
2-3
IGLOOe DC and Switching Characteristics
PLL Behavior at Brownout Condition
Actel recommends using monotonic power supplies or voltage regulators to ensure proper powerup behavior. Power ramp-up should be monotonic at least until VCC and VCCPLX exceed brownout activation levels. The VCC activation level is specified as 1.1 V worst-case (see Figure 2-1 and Figure 2-2 on page 2-5 for more details). When PLL power supply voltage and/or VCC levels drop below the VCC brownout levels (0.75 V 0.25 V), the PLL output lock signal goes low and/or the output clock is lost. Refer to the Power-Up/-Down Behavior of Low-Power Flash Devices chapter of the handbook for information on clock and lock recovery.
Internal Power-Up Activation Sequence
1. Core 2. Input buffers Output buffers, after 200 ns delay from input buffer activation.
VCC = VCCI + VT where VT can be from 0.58 V to 0.9 V (typically 0.75 V) VCC VCC = 1.575 V Region 1: I/O Buffers are OFF
Region 4: I/O buffers are ON. I/Os are functional (except differential inputs) but slower because VCCI is below specification. For the same reason, input buffers do not meet VIH/VIL levels, and output buffers do not meet VOH/VOL levels. Region 5: I/O buffers are ON and power supplies are within specification. I/Os meet the entire datasheet and timer specifications for speed, VIH/VIL , VOH/VOL , etc.
VCC = 1.425 V
Region 2: I/O buffers are ON. I/Os are functional (except differential inputs) but slower because VCCI/VCC are below specification. For the same reason, input buffers do not meet VIH/VIL levels, and output buffers do not meet VOH/VOL levels. Region 3: I/O buffers are ON. I/Os are functional; I/O DC specifications are met, but I/Os are slower because the VCC is below specification.
Activation trip point: Va = 0.85 V 0.25 V Deactivation trip point: Vd = 0.75 V 0.25 V
Region 1: I/O buffers are OFF
Activation trip point: Va = 0.9 V 0.3 V Deactivation trip point: Vd = 0.8 V 0.3 V
Min VCCI datasheet specification voltage at a selected I/O standard; i.e., 1.425 V or 1.7 V or 2.3 V or 3.0 V
VCCI
Figure 2-1 * V5 - I/O State as a Function of VCCI and VCC Voltage Levels
2 -4
A dv a n c e v 0. 3
IGLOOe DC and Switching Characteristics
VCC = VCCI + VT where VT can be from 0.58 V to 0.9 V (typically 0.75 V) VCC VCC = 1.575 V Region 1: I/O Buffers are OFF
Region 4: I/O buffers are ON. I/Os are functional (except differential inputs) but slower because VCCI is below specification. For the same reason, input buffers do not meet VIH/VIL levels, and output buffers do not meet VOH/VOL levels. Region 5: I/O buffers are ON and power supplies are within specification. I/Os meet the entire datasheet and timer specifications for speed, VIH/VIL , VOH/VOL , etc.
VCC = 1.14 V
Region 2: I/O buffers are ON. I/Os are functional (except differential inputs) but slower because VCCI/VCC are below specification. For the same reason, input buffers do not meet VIH/VIL levels, and output buffers do not meet VOH/VOL levels. Region 3: I/O buffers are ON. I/Os are functional; I/O DC specifications are met, but I/Os are slower because the VCC is below specification.
Activation trip point: Va = 0.85 V 0.2 V Deactivation trip point: Vd = 0.75 V 0.2 V
Region 1: I/O buffers are OFF
Activation trip point: Va = 0.9 V 0.15 V Deactivation trip point: Vd = 0.8 V 0.15 V
Min VCCI datasheet specification voltage at a selected I/O standard; i.e., 1.14 V,1.425 V, 1.7 V, 2.3 V, or 3.0 V
VCCI
Figure 2-2 * V2 Devices - I/O State as a Function of VCCI and VCC Voltage Levels
Thermal Characteristics
Introduction
The temperature variable in Actel Designer software refers to the junction temperature, not the ambient temperature. This is an important distinction because dynamic and static power consumption cause the chip junction to be higher than the ambient temperature. EQ 2-1 can be used to calculate junction temperature. TJ = Junction Temperature = T + TA EQ 2-1 where: TA = Ambient Temperature T = Temperature gradient between junction (silicon) and ambient T = ja * P ja = Junction-to-ambient of the package. ja numbers are located in Table 2-5. P = Power dissipation
A dv a n c e v 0. 3
2-5
IGLOOe DC and Switching Characteristics
Package Thermal Characteristics
The device junction-to-case thermal resistivity is jc and the junction-to-ambient air thermal resistivity is ja. The thermal characteristics for ja are shown for two air flow rates. The absolute maximum junction temperature is 100C. EQ 2-2 shows a sample calculation of the absolute maximum power dissipation allowed for an 896-pin FBGA package at commercial temperature and in still air. 100C - 70C Max. junction temp. (C) - Max. ambient temp. (C) Maximum Power Allowed = -------------------------------------------------------------------------------------------------------------------------------------- = ------------------------------------ = 2.206 W 13.6C/W ja (C/W) EQ 2-2 Table 2-5 * Package Thermal Resistivities ja Package Type Plastic Quad Flat Package (PQFP) Plastic Quad Flat Package (PQFP) with embedded heat spreader Fine Pitch Ball Grid Array (FBGA) Pin Count 208 208 256 484 676 896 jc 8.0 3.8 3.8 3.2 3.2 2.4 Still Air 26.1 16.2 26.9 20.5 16.4 13.6 200 ft./min. 22.5 13.3 22.8 17.0 13.0 10.4 500 ft./min. 20.8 11.9 21.5 15.9 12.0 9.4 Units C/W C/W C/W C/W C/W C/W
Temperature and Voltage Derating Factors
Table 2-6 * Temperature and Voltage Derating Factors for Timing Delays (normalized to TJ = 70C,VCC = 1.425 V) For IGLOOe V2 or V5 devices, 1.5 V DC Core Supply Voltage Junction Temperature (C) -40C 0.95 0.88 0.82 0C 0.96 0.89 0.84 25C 0.98 0.91 0.85 70C 1.00 0.93 0.87 85C 1.01 0.93 0.88 110C 1.02 0.94 0.89
Array Voltage VCC (V) 1.425 1.5 1.575 Table 2-7 *
Temperature and Voltage Derating Factors for Timing Delays (normalized to TJ = 70C, VCC = 1.14 V) For IGLOOe V2, 1.2 V DC Core Supply Voltage Junction Temperature (C) -40C 0.97 0.84 0.76 0C 0.98 0.85 0.77 25C 0.99 0.86 0.78 70C 1.00 0.87 0.79 85C 1.01 0.88 0.79 110C 1.01 0.88 0.80
Array Voltage VCC (V) 1.14 1.2 1.26
2 -6
A dv a n c e v 0. 3
IGLOOe DC and Switching Characteristics
Calculating Power Dissipation
Quiescent Supply Current
Quiescent supply current (IDD) calculation depends on multiple factors, including operating voltages (VCC , VCCI , and VJTAG), operating temperature, system clock frequency, and power modes usage. Actel recommends using the PowerCalculator and SmartPower software estimation tools to evaluate the projected static and active power based on the user design, power mode usage, operating voltage, and temperature.
Table 2-8 * Quiescent Supply Current (IDD), IGLOOe Flash*Freeze Mode* Core Voltage Typical (25C) 1.2 V 1.5 V AGLE600 34 72 AGLE3000 95 310 Units A A
* IDD includes VCC, VPUMP, VCCI, VJTAG , and VCCPLL currents. Values do not include I/O static contribution (PDC6 and PDC7). Table 2-9 * Quiescent Supply Current (IDD), IGLOOe Sleep Mode (VCC = 0 V)* Core Voltage VCCI /VJTAG = 1.2 V (per bank) Typical (25C) VCCI /VJTAG = 1.5 V (per bank) Typical (25C) VCCI /VJTAG = 1.8 V (per bank) Typical (25C) VCCI /VJTAG = 2.5 V (per bank) Typical (25C) VCCI /VJTAG= 3.3 V (per bank) Typical (25C) 1.2 V 1.2 V / 1.5 V 1.2 V / 1.5 V 1.2 V / 1.5 V 1.2 V / 1.5 V AGLE600 1.7 1.8 1.9 2.2 2.5 AGLE3000 1.7 1.8 1.9 2.2 2.5 Units A A A A A
* IDD includes VCC , VPUMP , and VCCPLL currents. Values do not include I/O static contribution (PDC6 and PDC7). Table 2-10 * Quiescent Supply Current (IDD), IGLOOe Shutdown Mode (VCC, VCCI = 0 V)* Core Voltage Typical (25C) 1.2 V / 1.5 V AGLE600 0 AGLE3000 0 Units A
* IDD includes VCC , VPUMP , VCCI , VJTAG , and VCCPLL currents. Values do not include I/O static contribution (PDC6 and PDC7).
A dv a n c e v 0. 3
2-7
IGLOOe DC and Switching Characteristics Table 2-11 * Quiescent Supply Current, No IGLOOe Flash*Freeze Mode* Core Voltage ICCA Current
2
AGLE600 28 82 1.7 1.8 1.9 2.2 2.5
AGLE3000 89 320 1.7 1.8 1.9 2.2 2.5
Units A A A A A A A
Typical (25C) ICCI or IJTAG Current
3, 4
1.2 V 1.5 V
VCCI /VJTAG = 1.2 V (per bank) Typical (25C) VCCI /VJTAG = 1.5 V (per bank) Typical (25C) VCCI /VJTAG = 1.8 V (per bank) Typical (25C) VCCI /VJTAG = 2.5 V (per bank) Typical (25C) VCCI /VJTAG= 3.3 V (per bank) Typical (25C) Notes:
1.2 V 1.2 V / 1.5 V 1.2 V / 1.5 V 1.2 V / 1.5 V 1.2 V / 1.5 V
1. To calculate total device IDD, multiply the number of banks used in ICCI and add ICCA contribution. 2. Includes VCC , VCCPLL, and VPUMP currents. 3. Per VCCI or VJTAG bank 4. Values do not include I/O static contribution (PDC6 and PDC7).
2 -8
A dv a n c e v 0. 3
IGLOOe DC and Switching Characteristics
Power per I/O Pin
Table 2-12 * Summary of I/O Input Buffer Power (per pin) - Default I/O Software Settings VCCI (V) Single-Ended 3.3 V LVTTL/LVCMOS 3.3 V LVTTL/LVCMOS - Schmitt trigger 2.5 V LVCMOS 2.5 V LVCMOS - Schmitt trigger 1.8 V LVCMOS 1.8 V LVCMOS - Schmitt trigger 1.5 V LVCMOS (JESD8-11) 1.5 V LVCMOS (JESD8-11) - Schmitt trigger 1.2 V LVCMOS 3
3
Static Power PDC6 (mW)1 - - - - - - - - - - - - - - 2.90 2.13 2.81 2.57 0.17 0.17 1.38 1.38 3.21 3.21 2.26 5.71
Dynamic Power PAC9 (W/MHz)2 16.34 24.49 4.71 6.13 1.66 1.78 1.01 0.97 0.60 0.53 17.76 19.10 17.76 19.10 7.07 3.62 2.97 2.55 0.85 0.85 3.30 3.30 8.08 8.08 0.95 1.62
3.3 3.3 2.5 2.5 1.8 1.8 1.5 1.5 1.2 1.2 3.3 3.3 3.3 3.3 3.3 2.5 3.3 2.5 1.5 1.5 2.5 2.5 3.3 3.3 2.5 3.3
1.2 V LVCMOS - Schmitt trigger 3.3 V PCI 3.3 V PCI - Schmitt trigger 3.3 V PCI-X 3.3 V PCI-X - Schmitt trigger Voltage-Referenced 3.3 V GTL 2.5 V GTL 3.3 V GTL+ 2.5 V GTL+ HSTL (I) HSTL (II) SSTL2 (I) SSTL2 (II) SSTL3 (I) SSTL3 (II) Differential LVDS LVPECL Notes:
1. PDC6 is the static power (where applicable) measured on VCCI. 2. PAC9 is the total dynamic power measured on VCCI . 3. Applicable for IGLOOe V2 devices only.
A dv a n c e v 0. 3
2-9
IGLOOe DC and Switching Characteristics Table 2-13 * Summary of I/O Output Buffer Power (per pin) - Default I/O Software Settings1 CLOAD (pF) Single-Ended 3.3 V LVTTL/LVCMOS 2.5 V LVCMOS 1.8 V LVCMOS 1.5 V LVCMOS (JESD8-11) 1.2 V LVCMOS 3.3 V PCI 3.3 V PCI-X Voltage-Referenced 3.3 V GTL 2.5 V GTL 3.3 V GTL+ 2.5 V GTL+ HSTL (I) HSTL (II) SSTL2 (I) SSTL2 (II) SSTL3 (I) SSTL3 (II) Differential LVDS LVPECL Notes: 1. Dynamic power consumption is given for standard load and software default drive strength and output slew. 2. PDC7 is the static power (where applicable) measured on VCCI. 3. PAC10 is the total dynamic power measured on VCCI. 4. Applicable for IGLOOe V2 devices only. - - 2.5 3.3 7.70 19.42 89.62 168.02 10 10 10 10 20 20 30 30 30 30 3.3 2.5 3.3 2.5 1.5 1.5 2.5 2.5 3.3 3.3 - - - - 7.08 13.88 16.69 25.91 26.02 42.21 24.08 13.52 24.10 13.54 26.22 27.22 105.56 116.60 114.87 131.76
4
VCCI (V)
Static Power PDC7 (mW)2
Dynamic Power PAC10 (W/MHz)3
5 5 5 5 5 10 10
3.3 2.5 1.8 1.5 1.2 3.3 3.3
- - - - - - -
148.00 83.23 54.58 37.05 17.94 204.61 204.61
2 -1 0
A d v a n c e v 0. 3
IGLOOe DC and Switching Characteristics
Power Consumption of Various Internal Resources
Table 2-14 * Different Components Contributing to the Dynamic Power Consumption in IGLOOe Devices For IGLOOe V2 or V5 Devices, 1.5 V DC Core Supply Voltage Device-Specific Dynamic Contributions (W/MHz) Parameter PAC1 PAC2 PAC3 PAC4 PAC5 PAC6 PAC7 PAC8 PAC9 PAC10 PAC11 PAC12 PAC13 Definition Clock contribution of a Global Rib Clock contribution of a Global Spine Clock contribution of a VersaTile row Clock contribution of a VersaTile used as a sequential module First contribution of a VersaTile used as a sequential module Second contribution of a VersaTile used as a sequential module Contribution of a VersaTile used as a combinatorial module Average contribution of a routing net Contribution of an I/O input pin (standard-dependent) Contribution of an I/O output pin (standard-dependent) Average contribution of a RAM block during a read operation Average contribution of a RAM block during a write operation Dynamic contribution for PLL AGLE600 19.7 4.16 0.88 0.11 0.057 0.207 0.207 0.7 See Table 2-12 on page 2-9. See Table 2-13 on page 2-10. 25.00 30.00 2.70 AGLE3000 12.77 1.85
* For a different output load, drive strength, or slew rate, Actel recommends using the Actel power calculator or SmartPower in Actel Libero(R) Integrated Design Environment (IDE) software. Table 2-15 * Different Components Contributing to the Static Power Consumption in IGLOO Devices For IGLOOe V2 or V5 Devices, 1.5 V DC Core Supply Voltage Device Specific Static Power (mW) Parameter PDC1 PDC2 PDC3 PDC4 PDC5 PDC6 PDC7 Definition Array static power in Active mode Array static power in Static (Idle) mode Array static power in Flash*Freeze mode Static PLL contribution Bank quiescent power (VCCI-dependent) I/O input pin static power (standard-dependent) I/O output pin static power (standard-dependent) AGLE600 AGLE3000
See Table 2-11 on page 2-8. See Table 2-10 on page 2-7. See Table 2-8 on page 2-7. 1.84 See Table 2-11 on page 2-8. See Table 2-12 on page 2-9. See Table 2-13 on page 2-10.
A dv a n c e v 0. 3
2 - 11
IGLOOe DC and Switching Characteristics Table 2-16 * Different Components Contributing to the Dynamic Power Consumption in IGLOOe Devices For IGLOOe V2 Devices, 1.2 V DC Core Supply Voltage Device-Specific Dynamic Contributions (W/MHz) Parameter PAC1 PAC2 PAC3 PAC4 PAC5 PAC6 PAC7 PAC8 PAC9 PAC10 PAC11 PAC12 PAC13 Definition Clock contribution of a Global Rib Clock contribution of a Global Spine Clock contribution of a VersaTile row Clock contribution of a VersaTile used as a sequential module First contribution of a VersaTile used as a sequential module Second contribution of a VersaTile used as a sequential module Contribution of a VersaTile used as a combinatorial module Average contribution of a routing net Contribution of an I/O input pin (standard-dependent) Contribution of an I/O output pin (standard-dependent) Average contribution of a RAM block during a read operation Average contribution of a RAM block during a write operation Dynamic PLL contribution AGLE600 12.61 2.66 0.56 0.071 0.045 0.186 0.109 0.449 See Table 2-8 on page 2-7. See Table 2-9 on page 2-7 and Table 2-10 on page 2-7. 25.00 30.00 2.10 AGLE3000 8.17 1.18
* For a different output load, drive strength, or slew rate, Actel recommends using the Actel power calculator or SmartPower in Actel Libero IDE software. Table 2-17 * Different Components Contributing to the Static Power Consumption in IGLOO Devices For IGLOOe V2 Devices, 1.2 V DC Core Supply Voltage Device Specific Static Power (mW) Parameter PDC1 PDC2 PDC3 PDC4 PDC5 PDC6 PDC7 Definition Array static power in Active mode Array static power in Static (Idle) mode Array static power in Flash*Freeze mode Static PLL contribution Bank quiescent power (VCCI-dependent) I/O input pin static power (standard-dependent) I/O output pin static power (standard-dependent) AGLE600 AGLE3000
See Table 2-11 on page 2-8. See Table 2-10 on page 2-7. See Table 2-8 on page 2-7. 0.90 See Table 2-11 on page 2-8. See Table 2-12 on page 2-9. See Table 2-13 on page 2-10.
2 -1 2
A d v a n c e v 0. 3
IGLOOe DC and Switching Characteristics
Power Calculation Methodology
This section describes a simplified method to estimate power consumption of an application. For more accurate and detailed power estimations, use the SmartPower tool in the Libero IDE software. The power calculation methodology described below uses the following variables: * * * * * * * * The number of PLLs as well as the number and the frequency of each output clock generated The number of combinatorial and sequential cells used in the design The internal clock frequencies The number and the standard of I/O pins used in the design The number of RAM blocks used in the design Toggle rates of I/O pins as well as VersaTiles--guidelines are provided in Table 2-18 on page 2-15. Enable rates of output buffers--guidelines are provided for typical applications in Table 2-19 on page 2-15. Read rate and write rate to the memory--guidelines are provided for typical applications in Table 2-19 on page 2-15. The calculation should be repeated for each clock domain defined in the design.
Methodology
Total Power Consumption--PTOTAL
PTOTAL = PSTAT + PDYN
PSTAT is the total static power consumption. PDYN is the total dynamic power consumption.
Total Static Power Consumption--PSTAT
PSTAT = (PDC1 or PDC2 or PDC3) + NBANKS * PDC5 + NINPUTS* PDC6 + NOUTPUTS* PDC7
NINPUTS is the number of I/O input buffers used in the design. NOUTPUTS is the number of I/O output buffers used in the design. NBANKS is the number of I/O banks powered in the design.
Total Dynamic Power Consumption--PDYN
PDYN = PCLOCK + PS-CELL + PC-CELL + PNET + PINPUTS + POUTPUTS + PMEMORY + PPLL
Global Clock Contribution--PCLOCK
PCLOCK = (PAC1 + NSPINE * PAC2 + NROW * PAC3 + NS-CELL * PAC4) * FCLK
NSPINE is the number of global spines used in the user design--guidelines are provided in Table 2-18 on page 2-15. NROW is the number of VersaTile rows used in the design--guidelines are provided in
Table 2-18 on page 2-15.
FCLK is the global clock signal frequency. NS-CELL is the number of VersaTiles used as sequential modules in the design. PAC1, PAC2, PAC3, and PAC4 are device-dependent.
Sequential Cells Contribution--PS-CELL
PS-CELL = NS-CELL * (PAC5 + 1 / 2 * PAC6) * FCLK
NS-CELL is the number of VersaTiles used as sequential modules in the design. When a multi-tile sequential cell is used, it should be accounted for as 1.
1
is the toggle rate of VersaTile outputs--guidelines are provided in Table 2-18 on
page 2-15.
FCLK is the global clock signal frequency.
A dv a n c e v 0. 3
2 - 13
IGLOOe DC and Switching Characteristics
Combinatorial Cells Contribution--PC-CELL
PC-CELL = NC-CELL* 1 / 2 * PAC7 * FCLK
NC-CELL is the number of VersaTiles used as combinatorial modules in the design.
1
is the toggle rate of VersaTile outputs--guidelines are provided in Table 2-18 on
page 2-15.
FCLK is the global clock signal frequency.
Routing Net Contribution--PNET
PNET = (NS-CELL + NC-CELL) * 1 / 2 * PAC8 * FCLK
NS-CELL is the number of VersaTiles used as sequential modules in the design. NC-CELL is the number of VersaTiles used as combinatorial modules in the design.
1
is the toggle rate of VersaTile outputs--guidelines are provided in Table 2-18 on
page 2-15.
FCLK is the global clock signal frequency.
I/O Input Buffer Contribution--PINPUTS
PINPUTS = NINPUTS * 2 / 2 * PAC9 * FCLK
NINPUTS is the number of I/O input buffers used in the design. FCLK is the global clock signal frequency.
2 is the I/O buffer toggle rate--guidelines are provided in Table 2-18 on page 2-15.
I/O Output Buffer Contribution--POUTPUTS
POUTPUTS = NOUTPUTS * 2 / 2 * 1 * PAC10 * FCLK
NOUTPUTS is the number of I/O output buffers used in the design.
2 is the I/O buffer toggle rate--guidelines are provided in Table 2-18 on page 2-15. 1 is the I/O buffer enable rate--guidelines are provided in Table 2-19 on page 2-15.
FCLK is the global clock signal frequency.
RAM Contribution--PMEMORY
PMEMORY = PAC11 * NBLOCKS * FREAD-CLOCK * 2 + PAC12 * NBLOCK * FWRITE-CLOCK * 3
NBLOCKS is the number of RAM blocks used in the design. FREAD-CLOCK is the memory read clock frequency.
on page 2-15.
2 is the RAM enable rate for read operations--guidelines are provided in Table 2-19 3 is the RAM enable rate for write operations--guidelines are provided in Table 2-19
FWRITE-CLOCK is the memory write clock frequency.
on page 2-15.
PLL Contribution--PPLL
PPLL = PDC4 + PAC13 * FCLKOUT
FCLKOUT is the output clock frequency.1
1.
If a PLL is used to generate more than one output clock, include each output clock in the formula by adding its corresponding contribution (PAC13* FCLKOUT product) to the total PLL contribution.
2 -1 4
A d v a n c e v 0. 3
IGLOOe DC and Switching Characteristics
Guidelines
Toggle Rate Definition
A toggle rate defines the frequency of a net or logic element relative to a clock. It is a percentage. If the toggle rate of a net is 100%, this means that this net switches at half the clock frequency. Below are some examples: * * The average toggle rate of a shift register is 100% as all flip-flop outputs toggle at half of the clock frequency. The average toggle rate of an 8-bit counter is 25%: - - - - - - Bit 0 (LSB) = 100% Bit 1 Bit 2 ... Bit 7 (MSB) = 0.78125% Average toggle rate = (100% + 50% + 25% + 12.5% + . . . + 0.78125%) / 8 = 50% = 25%
Enable Rate Definition
Output enable rate is the average percentage of time during which tristate outputs are enabled. When nontristate output buffers are used, the enable rate should be 100%. Table 2-18 * Toggle Rate Guidelines Recommended for Power Calculation Component Definition Toggle rate of VersaTile outputs I/O buffer toggle rate Guideline 10% 10%
1 2
Component
Table 2-19 * Enable Rate Guidelines Recommended for Power Calculation Definition I/O output buffer enable rate RAM enable rate for read operations RAM enable rate for write operations Guideline 100% 12.5% 12.5%
1 2 3
A dv a n c e v 0. 3
2 - 15
IGLOOe DC and Switching Characteristics
User I/O Characteristics
Timing Model
I/O Module (Non-Registered) Combinational Cell Y tPD = 1.19 ns tPD = 1.04 ns tDP = 1.75 ns I/O Module (Non-Registered) Combinational Cell Y LVPECL
Combinational Cell Y tPD = 1.77 ns Combinational Cell Y I/O Module (Registered) tPY = 1.45 ns tPD = 1.33 ns LVPECL D Q Combinational Cell Y tICLKQ = 0.43 ns tISUD = 0.47 ns Input LVTTL/LVCMOS 3.3 V Clock Register Cell tPY = 1.10 ns D I/O Module (Non-Registered) LVDS, BLVDS, M-LVDS tPY = 1.62 ns tCLKQ = 0.90 ns tSUD = 0.82 ns Q tPD = 0.90 ns Combinational Cell Y tPD = 0.85 ns
tDP = 3.13 ns I/O Module (Non-Registered)
LVTTL/LVCMOS 3.3 V Output drive strength = 12 mA High slew rate
tDP = 2.76 ns
LVTTL/LVCMOS 3.3 V Output drive strength = 24 mA High slew rate
I/O Module (Non-Registered) LVCMOS 1.5V Output drive strength = 12 mA High slew
tDP = 3.30 ns
Register Cell D Q D
I/O Module (Registered)
Q GTL+ 3.3V tDP = 1.85 ns
tCLKQ = 0.90 ns tSUD = 0.82 ns
tOCLKQ = 1.02 ns tOSUD = 0.52 ns
Input LVTTL/LVCMOS 3.3 V Input LVTTL/LVCMOS 3.3 V Clock Clock tPY = 1.10 ns tPY = 1.10 ns
Figure 2-3 * Timing Model Operating Conditions: Std. Speed, Commercial Temperature Range (TJ = 70C), Worst-Case VCC = 1.425 V, Applicable to 1.5 V DC Core Voltage, V2 and V5 devices
2 -1 6
A d v a n c e v 0. 3
IGLOOe DC and Switching Characteristics
tPY
tDIN
D PAD Y
Q DIN
CLK
To Array
tPY = MAX(tPY(R), tPY(F)) tDIN = MAX(tDIN(R), tDIN(F)) VIH Vtrip PAD Vtrip VCC 50% Y GND tPY (R) tPYS (R) tPY (F) tPYS (F) VCC 50% DIN GND tDOUT (R)
Figure 2-4 * Input Buffer Timing Model and Delays (example)
I/O Interface
VIL
50%
50% tDOUT (F)
A dv a n c e v 0. 3
2 - 17
IGLOOe DC and Switching Characteristics
tDOUT DQ D From Array I/O Interface CLK
tDP PAD Std Load tDP = MAX(tDP(R), tDP(F)) tDOUT = MAX(tDOUT(R), tDOUT(F)) tDOUT VCC 50% VCC (F) 0V
DOUT
tDOUT (R) 50%
D
DOUT
50%
50% VOH
0V
Vtrip PAD tDP (R)
Figure 2-5 * Output Buffer Model and Delays (example)
Vtrip VOL tDP (F)
2 -1 8
A d v a n c e v 0. 3
IGLOOe DC and Switching Characteristics
tEOUT D E Q tZL, tZH, tHZ, tLZ, tZLS, tZHS
CLK
EOUT D D Q DOUT CLK PAD
I/O Interface
tEOUT = MAX(tEOUT(r), tEOUT(f)) VCC
D VCC E 50% tEOUT (R) 50% EOUT tZL PAD Vtrip VOL 50% tEOUT (F) VCC 50% tHZ 90% VCCI 50% tZH VCCI Vtrip 10% VCCI 50% tLZ
VCC D VCC E 50% tEOUT (R) VCC EOUT PAD Vtrip VOL 50% tZLS 50% VOH 50% tZHS Vtrip 50% tEOUT (F)
Figure 2-6 * Tristate Output Buffer Timing Model and Delays (example)
A dv a n c e v 0. 3
2 - 19
IGLOOe DC and Switching Characteristics
Overview of I/O Performance
Summary of I/O DC Input and Output Levels - Default I/O Software Settings
Table 2-20 * Summary of Maximum and Minimum DC Input and Output Levels Applicable to Commercial and Industrial Conditions Drive Strength Slew Rate Min., V 12 mA 12 mA 12 mA 12 mA 2 mA High High High High High -0.3 -0.3 -0.3 -0.3 -0.3 VIL Max., V 0.8 0.7 2 1.7 VIH Min., V Max., V 3.6 2.7 1.9 1.575 1.26 VOL Max., V 0.4 0.7 0.45 VOH Min., V 2.4 1.7 IOL1 IOH1 mA mA 12 12 12 12 12 12 2
I/O Standard 3.3 V LVTTL / 3.3 V LVCMOS 2.5 V LVCMOS 1.8 V LVCMOS 1.5 V LVCMOS 1.2 V LVCMOS4
0.35 * VCCI 0.65*VCCI 0.35 * VCCI 0.65*VCCI 0.35 * VCCI 0.65 * VCCI
VCCI - 0.45 12 2
0.25 * VCCI 0.75 * VCCI 12 0.25 * VCCI 0.75 * VCCI
3.3 V PCI 3.3 V PCI-X 3.3 V GTL 2.5 V GTL 3.3 V GTL+ 2.5 V GTL+ HSTL (I) HSTL (II) SSTL2 (I) SSTL2 (II) SSTL3 (I) SSTL3 (II) Notes: 25 25 mA2 mA2 High High High High High High High High High High -0.3 -0.3 -0.3 -0.3 -0.3 -0.3 -0.3 -0.3 -0.3 -0.3
Per PCI Specification Per PCI-X Specification VREF - 0.05 VREF + 0.05 VREF - 0.05 VREF + 0.05 VREF - 0.1 VREF - 0.1 VREF - 0.1 VREF - 0.1 VREF - 0.2 VREF - 0.2 VREF - 0.2 VREF - 0.2 VREF + 0.1 VREF + 0.1 VREF + 0.1 VREF + 0.1 VREF + 0.2 VREF + 0.2 VREF + 0.2 VREF + 0.2 3.6 2.7 3.6 2.7 1.575 1.575 2.7 2.7 3.6 3.6 0.4 0.4 0.6 0.6 0.4 0.4 0.54 0.35 0.7 0.5 - - - - VCCI - 0.4 VCCI - 0.4 25 25 35 33 8 15 25 25 35 33 8 15 15 18 14 21
35 mA 33 mA 8 mA 15 mA2
15 mA 18 mA 14 mA 21 mA
VCCI - 0.62 15 VCCI - 0.43 18 VCCI - 1.1 VCCI - 0.9 14 21
1. Currents are measured at 85C junction temperature. 2. Output drive strength is below JEDEC specification. 3. Output Slew Rates can be extracted from IBIS Models, located at http://www.actel.com/download/ibis/default.aspx. 4. Applicable to V2 Devices ONLY, operating in the 1.2 V core range.
2 -2 0
A d v a n c e v 0. 3
IGLOOe DC and Switching Characteristics Table 2-21 * Summary of Maximum and Minimum DC Input Levels Applicable to Commercial and Industrial Conditions Commercial1 IIL DC I/O Standards 3.3 V LVTTL / 3.3 V LVCMOS 2.5 V LVCMOS 1.8 V LVCMOS 1.5 V LVCMOS 1.2 V LVCMOS3 3.3 V PCI 3.3 V PCI-X 3.3 V GTL 2.5 V GTL 3.3 V GTL+ 2.5 V GTL+ HSTL (I) HSTL (II) SSTL2 (I) SSTL2 (II) SSTL3 (I) SSTL3 (II) Notes: 1. Commercial range (0C < TA < 70C) 2. Industrial range (-40C < TA < 85C) 3. Applicable to V2 Devices ONLY, operating in the 1.2 V core range. A 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 IIH A 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 IIL A 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 Industrial2 IIH A 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
A dv a n c e v 0. 3
2 - 21
IGLOOe DC and Switching Characteristics
Summary of I/O Timing Characteristics - Default I/O Software Settings
Table 2-22 * Summary of AC Measuring Points Standard 3.3 V LVTTL / 3.3 V LVCMOS 2.5 V LVCMOS 1.8 V LVCMOS 1.5 V LVCMOS 1.2 V LVCMOS 3.3 V PCI 3.3 V PCI-X 3.3 V GTL 2.5 V GTL 3.3 V GTL+ 2.5 V GTL+ HSTL (I) HSTL (II) SSTL2 (I) SSTL2 (II) SSTL3 (I) SSTL3 (II) LVDS LVPECL Table 2-23 * I/O AC Parameter Definitions Parameter tDP tPY tDOUT tEOUT tDIN tPYS tHZ tZH tLZ tZL tZHS tZLS Definition Data to Pad delay through the Output Buffer Pad to Data delay through the Input Buffer with Schmitt trigger disabled Data to Output Buffer delay through the I/O interface Enable to Output Buffer Tristate Control delay through the I/O interface Input Buffer to Data delay through the I/O interface Pad to Data delay through the Input Buffer with Schmitt trigger enabled Enable to Pad delay through the Output Buffer--HIGH to Z Enable to Pad delay through the Output Buffer--Z to HIGH Enable to Pad delay through the Output Buffer--LOW to Z Enable to Pad delay through the Output Buffer--Z to LOW Enable to Pad delay through the Output Buffer with delayed enable--Z to HIGH Enable to Pad delay through the Output Buffer with delayed enable--Z to LOW Input Reference Voltage (VREF_TYP) - - - - - - - - - 0.8 V 0.8 V 1.0 V 1.0 V 0.75 V 0.75 V 1.25 V 1.25 V 1.5 V 1.5 V - - Board Termination Voltage (VTT_REF) - - - - - - - - - 1.2 V 1.2 V 1.5 V 1.5 V 0.75 V 0.75 V 1.25 V 1.25 V 1.485 V 1.485 V - - Measuring Trip Point (Vtrip) 1.4 V 1.2 V 0.90 V 0.75 V 0.6 V 0.285*VCCI (RR) 0.615*VCCI (FF)) 0.285*VCCI (RR) 0.615*VCCI (FF) VREF VREF VREF VREF VREF VREF VREF VREF VREF VREF Cross point Cross point
2 -2 2
A d v a n c e v 0. 3
IGLOOe DC and Switching Characteristics Table 2-24 * Summary of I/O Timing Characteristics--Software Default Settings Std. Speed Grade, Commercial-Case Conditions: TJ = 70C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V External Resistor () Capacitive Load (pF) Drive Strength (mA)
tE OUT (ns)
Slew Rate
tDOUT (ns)
tPYS (ns)
tDIN (ns)
tDP (ns)
tLZ (ns)
tZLS (ns)
tPY (ns)
tZL (ns)
tZHS (ns) - -
tZ H (ns)
tHZ (ns)
I/O Standard 3.3 V LVTTL / 3.3 V LVCMOS 2.5 V LVCMOS 1.8 V LVCMOS 1.5 V LVCMOS 3.3 V PCI 3.3 V PCI-X 3.3 V GTL 2.5 V GTL 3.3 V GTL+ 2.5 V GTL+ HSTL (I) HSTL (II) SSTL2 (I) SSTL2 (II) SSTL3 (I) SSTL3 (II) LVDS/B-LVDS/ M-LVDS LVPECL Notes:
12 mA 12 mA 12 mA 12 mA Per PCI spec
High High High High High
5 5 5 5 10 10 10 10 10 10 20 20 30 30 30 30 - -
- - - -
0.98 2.18 0.19 1.10 1.37 0.67 2.22 1.72 2.78 3.17 5.85 5.35 ns 0.98 2.21 0.19 1.34 1.45 0.67 2.25 1.89 2.86 3.06 5.88 5.52 ns 0.98 2.44 0.19 1.30 1.63 0.67 2.48 2.07 3.15 3.67 6.11 5.70 ns 0.98 2.77 0.19 1.50 1.82 0.67 2.82 2.35 3.33 3.78 6.45 5.98 ns
25 2 0.98 2.44 0.19 0.98 1.45 0.67 2.49 1.84 2.79 3.17 6.12 5.47 ns 25 2 0.98 2.44 0.19 0.94 1.37 0.67 2.49 1.84 2.79 3.17 6.12 5.47 ns 25 25 25 25 50 25 50 25 50 25 - - 0.98 1.83 0.19 2.41 0.98 1.90 0.19 2.04 0.98 1.85 0.19 1.35 0.98 1.97 0.19 1.29 0.98 2.74 0.19 1.77 0.98 2.62 0.19 1.77 0.98 1.91 0.19 1.15 0.98 1.94 0.19 1.15 0.98 2.05 0.19 1.09 0.98 1.86 0.19 1.09 0.98 1.77 0.19 1.62 0.98 1.75 0.19 1.45 - - - - - - - - - - - - 0.67 1.84 1.83 0.00 0.00 5.47 5.46 ns 0.67 1.94 1.87 0.00 0.00 5.57 5.50 ns 0.67 1.88 1.81 0.00 0.00 5.51 5.44 ns 0.67 2.00 1.84 0.00 0.00 5.63 5.47 ns 0.67 2.79 2.73 0.00 0.00 6.42 6.36 ns 0.67 2.66 2.40 0.00 0.00 6.29 6.03 ns 0.67 1.94 1.72 0.00 0.00 5.57 5.35 ns 0.67 1.97 1.66 0.00 0.00 5.60 5.29 ns 0.67 2.09 1.71 0.00 0.00 5.72 5.34 ns 0.67 1.89 1.58 0.00 0.00 5.52 5.21 ns - - - - - - - - - - - - ns ns
Per PCI-X High spec 25 mA 25 mA 35 mA 33 mA 8 mA 15 mA 15 mA 18 mA 14 mA 21 mA 24 mA 24 mA High High High High High High High High High High High High
1. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values. 2. Resistance is used to measure I/O propagation delays as defined in PCI specifications. See Figure 2-12 on page 2-42 for connectivity. This resistor is not required during normal operation.
A dv a n c e v 0. 3
2 - 23
Units
IGLOOe DC and Switching Characteristics Table 2-25 * Summary of I/O Timing Characteristics--Software Default Settings Std. Speed Grade, Commercial-Case Conditions: TJ = 70C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 3.0 V External Resistor () Capacitive Load (pF) Drive Strength (mA)
tE OUT (ns)
Slew Rate
tDOUT (ns)
tPYS (ns)
tDIN (ns)
tDP (ns)
tLZ (ns)
tZLS (ns)
tPY (ns)
tZL (ns)
tZHS (ns) - -
tZ H (ns)
tHZ (ns)
I/O Standard 3.3 V LVTTL / 3.3 V LVCMOS 2.5 V LVCMOS 1.8 V LVCMOS 1.5 V LVCMOS 1.2 V LVCMOS 3.3 V PCI 3.3 V PCI-X 3.3 V GTL 2.5 V GTL 3.3 V GTL+ 2.5 V GTL+ HSTL (I) HSTL (II) SSTL2 (I) SSTL2 (II) SSTL3 (I) SSTL3 (II) LVDS/B-LVDS/ M-LVDS LVPECL Notes:
12 mA 12 mA 12 mA 12 mA 2mA Per PCI spec
High High High High High High
5 5 5 5 5 10 10 10 10 10 10 20 20 30 30 30 30 - -
- - - - -
1.55 2.46 0.26 1.31 1.57 1.10 2.51 2.04 3.27 3.96 8.32 7.85 1.55 2.50 0.26 1.55 1.76 1.10 2.54 2.22 3.34 3.83 8.35 8.03 1.55 2.74 0.26 1.53 1.95 1.10 2.79 2.41 3.66 4.54 8.60 8.21 1.55 3.09 0.26 1.72 2.15 1.10 3.15 2.70 3.85 4.66 8.96 8.51 1.55 4.07 0.26 2.06 2.96 1.10 3.90 3.43 3.80 4.02 9.49 9.03
25 2 1.55 2.74 0.26 1.19 1.63 1.10 2.80 2.16 3.28 3.96 8.60 7.97 25 2 1.55 2.74 0.26 1.21 1.57 1.10 2.80 2.16 3.28 3.96 8.60 7.97 25 25 25 25 50 25 50 25 50 25 - - 1.55 2.09 0.26 2.75 1.55 2.16 0.26 2.35 1.55 2.11 0.26 1.61 1.55 2.23 0.26 1.55 1.55 3.10 0.26 1.94 1.55 2.93 0.26 1.94 1.55 2.17 0.26 1.39 1.55 2.20 0.26 1.39 1.55 2.32 0.26 1.32 1.55 2.12 0.26 1.32 1.55 2.19 0.26 1.88 1.55 2.16 0.26 1.70 - - - - - - - - - - - - 1.10 2.10 2.09 1.10 2.20 2.13 1.10 2.15 2.07 1.10 2.28 2.11 1.10 3.12 3.10 1.10 2.98 2.75 1.10 2.21 2.04 1.10 2.24 1.97 1.10 2.37 2.02 1.10 2.16 1.89 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 7.91 7.89 8.01 7.94 7.95 7.88 8.08 7.91 8.93 8.91 8.79 8.55 8.02 7.84 8.05 7.78 8.17 7.83 7.97 7.70 - -
Per PCI-X High spec 25 mA 25 mA 35 mA 33 mA 8 mA 15 mA 15 mA 18 mA 14 mA 21 mA 24 mA 24 mA High High High High High High High High High High High High
1. For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-6 for derating values. 2. Resistance is used to measure I/O propagation delays as defined in PCI specifications. See Figure 2-12 on page 2-42 for connectivity. This resistor is not required during normal operation.
2 -2 4
A d v a n c e v 0. 3
Units ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns
IGLOOe DC and Switching Characteristics
Detailed I/O DC Characteristics
Table 2-26 * Input Capacitance Symbol CIN CINCLK Input capacitance Input capacitance on the clock pin Definition Conditions VIN = 0, f = 1.0 MHz VIN = 0, f = 1.0 MHz Min. Max. 8 8 Units pF pF
Table 2-27 * I/O Output Buffer Maximum Resistances1 Standard 3.3 V LVTTL / 3.3 V LVCMOS Drive Strength 4 mA 8 mA 12 mA 16 mA 24 mA 2.5 V LVCMOS 4 mA 8 mA 12 mA 16 mA 24 mA 1.8 V LVCMOS 2 mA 4 mA 6 mA 8 mA 12 mA 16 mA 1.5 V LVCMOS 2 mA 4 mA 6 mA 8 mA 12 mA 1.2 V LVCMOS 3.3 V PCI/PCI-X 3.3 V GTL 2.5 V GTL 3.3 V GTL+ Notes: 1. These maximum values are provided for informational reasons only. Minimum output buffer resistance values depend on VCCI, drive strength selection, temperature, and process. For board design considerations and detailed output buffer resistances, use the corresponding IBIS models located on the Actel website at http://www.actel.com/techdocs/models/ibis.html. 2. R(PULL-DOWN-MAX) = (VOLspec) / IOLspec 3. R(PULL-UP-MAX) = (VCCImax - VOHspec) / IOHs pe c 2 mA Per PCI/PCI-X specification 25 mA 25 mA 35 mA RPULL-DOWN ()2 100 50 25 17 11 100 50 25 20 11 200 100 50 50 20 20 200 100 67 33 33 TBD 25 11 14 12 RPULL-UP ()3 300 150 75 50 33 200 100 50 40 22 225 112 56 56 22 22 224 112 75 37 37 TBD 75 - - -
A dv a n c e v 0. 3
2 - 25
IGLOOe DC and Switching Characteristics Table 2-27 * I/O Output Buffer Maximum Resistances1 (continued) Standard 2.5 V GTL+ HSTL (I) HSTL (II) SSTL2 (I) SSTL2 (II) SSTL3 (I) SSTL3 (II) Notes: 1. These maximum values are provided for informational reasons only. Minimum output buffer resistance values depend on VCCI, drive strength selection, temperature, and process. For board design considerations and detailed output buffer resistances, use the corresponding IBIS models located on the Actel website at http://www.actel.com/techdocs/models/ibis.html. 2. R(PULL-DOWN-MAX) = (VOLspec) / IOLspec 3. R(PULL-UP-MAX) = (VCCImax - VOHspec) / IOHs pe c Table 2-28 * I/O Weak Pull-Up/Pull-Down Resistances Minimum and Maximum Weak Pull-Up/Pull-Down Resistance Values R((WEAK PULL-UP)1 () VCCI 3.3 V 2.5 V 1.8 V 1.5 V 1.2 V Notes: 1. R(WEAK PULL-DOWN-MAX) = (VOLspec) / IWEAK PULL-DOWN-MIN 2. R(WEAK PULL-UP-MAX) = (VCCImax - VOHspec) / IWEAK PULL-UP-MIN Min. 10 k 11 k 18 k 19 k TBD Max. 45 k 55 k 70 k 90 k TBD R(WEAK PULL-DOWN)2 () Min. 10 k 12 k 17 k 19 k TBD Max. 45 k 74 k 110 k 140 k TBD Drive Strength 33 mA 8 mA 15 mA 15 mA 18 mA 14 mA 21 mA RPULL-DOWN ()2 15 50 25 27 13 44 18 RPULL-UP ()3 - 50 25 31 15 69 32
2 -2 6
A d v a n c e v 0. 3
IGLOOe DC and Switching Characteristics Table 2-29 * I/O Short Currents IOSH/IOSL Drive Strength 3.3 V LVTTL / 3.3 V LVCMOS 4 mA 8 mA 12 mA 16 mA 24 mA 2.5 V LVCMOS 4 mA 8 mA 12 mA 16 mA 24 mA 1.8 V LVCMOS 2 mA 4 mA 6 mA 8 mA 12 mA 16 mA 1.5 V LVCMOS 2 mA 4 mA 6 mA 8 mA 12 mA 1.2 V LVCMOS 3.3 V PCI/PCIX 3.3 V GTL 2.5 V GTL 3.3 V GTL+ 2.5 V GTL+ HSTL (I) HSTL (II) SSTL2 (I) SSTL2 (II) SSTL3 (I) SSTL3 (II) * TJ = 100C 2 mA Per PCI/PCI-X Specification 25 mA 25 mA 35 mA 33 mA 8 mA 15 mA 15 mA 18 mA 14 mA 21 mA 268 169 268 169 32 66 83 169 51 103 IOSH (mA)* 25 51 103 132 268 16 32 65 83 169 9 17 35 45 91 91 13 25 32 66 66 TBD Per PCI Curves 181 124 181 124 39 55 87 124 54 109 IOSL (mA)* 27 54 109 127 181 18 37 74 87 124 11 22 44 51 74 74 16 33 39 55 55 TBD
A dv a n c e v 0. 3
2 - 27
IGLOOe DC and Switching Characteristics The length of time an I/O can withstand IOSH/IOSL events depends on the junction temperature. The reliability data below is based on a 3.3 V, 36 mA I/O setting, which is the worst case for this type of analysis. For example, at 110C, the short current condition would have to be sustained for more than three months to cause a reliability concern. The I/O design does not contain any short circuit protection, but such protection would only be needed in extremely prolonged stress conditions. Table 2-30 * Duration of Short Circuit Event before Failure Temperature -40C 0C 25C 70C 85C 100C 110C Table 2-31 * Schmitt Trigger Input Hysteresis Hysteresis Voltage Value (Typ.) for Schmitt Mode Input Buffers Input Buffer Configuration 3.3 V LVTTL/LVCMOS/PCI/PCI-X (Schmitt trigger mode) 2.5 V LVCMOS (Schmitt trigger mode) 1.8 V LVCMOS (Schmitt trigger mode) 1.5 V LVCMOS (Schmitt trigger mode) 1.2 V LVCMOS (Schmitt trigger mode) Table 2-32 * I/O Input Rise Time, Fall Time, and Related I/O Reliability* Input Buffer LVTTL/LVCMOS (Schmitt trigger disabled) LVTTL/LVCMOS (Schmitt trigger enabled) HSTL/SSTL/GTL LVDS/B-LVDS/M-LVDS/LVPECL Input Rise/Fall Time (min.) No requirement No requirement Input Rise/Fall Time (max.) 10 ns* Reliability 20 years (110C) Hysteresis Value (typ.) 240 mV 140 mV 80 mV 60 mV 40 mV Time before Failure > 20 years > 20 years > 20 years 5 years 2 years 6 months 3 months
No requirement, but input noise 20 years (110C) voltage cannot exceed Schmitt hysteresis. 10 ns* 10 ns* 10 years (100C) 10 years (100C)
No requirement No requirement
* The maximum input rise/fall time is related to the noise induced into the input buffer trace. If the noise is low, then the rise time and fall time of input buffers can be increased beyond the maximum value. The longer the rise/fall times, the more susceptible the input signal is to the board noise. Actel recommends signal integrity evaluation/characterization of the system to ensure that there is no excessive noise coupling into input signals.
2 -2 8
A d v a n c e v 0. 3
IGLOOe DC and Switching Characteristics
Single-Ended I/O Characteristics
3.3 V LVTTL / 3.3 V LVCMOS
Low-Voltage Transistor-Transistor Logic is a general purpose standard (EIA/JESD) for 3.3 V applications. It uses an LVTTL input buffer and push-pull output buffer. The 3.3 V LVCMOS standard is supported as part of the 3.3 V LVTTL support. Table 2-33 * Minimum and Maximum DC Input and Output Levels 3.3 V LVTTL / 3.3 V LVCMOS VIL VIH VOL VOH IOL IOH IOSH
1
IOSL Max., mA 27 54 109 127 181
1
IIL
2
IIH
Drive Strength Min., V Max., V Min., V Max., V Max., V Min., V mA mA Max., mA 4 mA 8 mA 12 mA 16 mA 24 mA Notes: 1. Currents are measured at 100C junction temperature and maximum voltage. 2. Currents are measured at 85C junction temperature. 3. Software default selection highlighted in gray. -0.3 -0.3 -0.3 -0.3 -0.3 0.8 0.8 0.8 0.8 0.8 2 2 2 2 2 3.6 3.6 3.6 3.6 3.6 0.4 0.4 0.4 0.4 0.4 2.4 2.4 2.4 2.4 2.4 4 8 4 8 25 51 103 132 268
A A2 10 10 10 10 10 10 10 10 10 10
12 12 16 16 24 24
Test Point Datapath 35 pF
R=1k Test Point Enable Path
R to VCCI for tLZ/tZL/tZLS R to GND for tHZ/tZH/tZHS 35 pF for tZH/tZHS/tZL/tZLS 5 pF for tHZ/tLZ
Figure 2-7 * AC Loading Table 2-34 * AC Waveforms, Measuring Points, and Capacitive Loads Input LOW (V) 0 Input HIGH (V) 3.3 Measuring Point* (V) 1.4 VREF (typ.) (V) - CLOAD (pF) 5
* Measuring point = Vtrip. See Table 2-22 on page 2-22 for a complete table of trip points.
A dv a n c e v 0. 3
2 - 29
IGLOOe DC and Switching Characteristics
Timing Characteristics
1.5 V DC Core Voltage Table 2-35 * 3.3 V LVTTL / 3.3 V LVCMOS Low Slew - Applies to 1.5 V DC Core Voltage Commercial-Case Conditions: TJ = 70C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V Drive Strength Speed Grade tDOUT 4 mA 8 mA 12 mA 16 mA 24 mA Std. Std. Std. Std. Std. 0.98 0.98 0.98 0.98 0.98 tDP tDIN tPY tPYS tEOUT 0.67 0.67 0.67 0.67 0.67 tZL tZH tLZ tHZ tZLS 8.76 7.86 7.23 7.05 6.95 tZHS 7.73 7.17 6.75 6.66 6.67 Units ns ns ns ns ns 5.04 0.19 1.10 1.37 4.16 0.19 1.10 1.37 3.53 0.19 1.10 1.37 3.36 0.19 1.10 1.37 3.26 0.19 1.10 1.37 5.13 4.10 2.33 2.22 4.23 3.54 2.60 2.72 3.60 3.12 2.78 3.03 3.42 3.03 2.82 3.12 3.32 3.04 2.87 3.45
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values. Table 2-36 * 3.3 V LVTTL / 3.3 V LVCMOS High Slew - Applies to 1.5 V DC Core Voltage Commercial-Case Conditions: TJ = 70C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V Drive Strength Speed Grade tDOUT 4 mA 8 mA 12 mA 16 mA 24 mA Notes: 1. Software default selection highlighted in gray. 2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values. Std. Std. Std. Std. Std. 0.98 0.98 0.98 0.98 0.98 tDP tDIN tPY tPYS tEOUT 0.67 0.67 0.67 0.67 0.67 tZL tZH tLZ tHZ tZLS 6.62 6.13 5.85 5.80 5.82 tZHS Units 5.96 5.55 5.35 5.32 5.27 ns ns ns ns ns
2.93 0.19 1.10 1.37 2.45 0.19 1.10 1.37 2.18 0.19 1.10 1.37 2.13 0.19 1.10 1.37 2.15 0.19 1.10 1.37
2.99 2.33 0.00 2.34 2.50 1.92 2.60 2.84 2.22 1.72 2.78 3.17 2.17 1.69 2.83 3.26 2.19 1.64 2.88 3.58
2 -3 0
A d v a n c e v 0. 3
IGLOOe DC and Switching Characteristics 1.2 V DC Core Voltage Table 2-37 * 3.3 V LVTTL / 3.3 V LVCMOS Low Slew - Applies to 1.2 V DC Core Voltage Commercial-Case Conditions: TJ = 70C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 3.0 V Drive Strength Speed Grade tDOUT tDP tDIN tPY tPYS tEOUT tZL tZH tLZ tHZ tZLS tZHS Units 4 mA Std. 1.55 5.53 0.26 1.31 1.57 1.10 5.63 4.53 2.78 2.85 11.44 10.34 ns 8 mA 12 mA 16 mA 24 mA Std. Std. Std. Std. 1.55 1.55 1.55 1.55 4.58 0.26 1.31 1.57 3.92 0.26 1.31 1.57 3.73 0.26 1.31 1.57 3.62 0.26 1.31 1.57 1.10 1.10 1.10 1.10 4.67 3.95 3.07 3.44 10.48 3.99 3.51 3.27 3.80 3.79 3.41 3.31 3.90 3.69 3.42 3.36 4.28 9.80 9.60 9.50 9.76 9.32 9.22 9.23 ns ns ns ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-6 for derating values. Table 2-38 * 3.3 V LVTTL / 3.3 V LVCMOS High Slew - Applies to 1.2 V DC Core Voltage Commercial-Case Conditions: TJ = 70C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 3.0 V Drive Strength Speed Grade tDOUT 4 mA 8 mA 12 mA 16 mA 24 mA Notes: 1. Software default selection highlighted in gray. 2. For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-6 for derating values. Std. Std. Std. Std. Std. 1.55 1.55 1.55 1.55 1.55 tDP tDIN tPY tPYS tEOUT 1.10 1.10 1.10 1.10 1.10 tZL tZH tLZ tHZ tZLS 9.14 8.61 8.32 8.27 8.29 tZHS 8.48 8.05 7.85 7.81 7.76 Units ns ns ns ns ns
3.27 0.26 1.31 1.57 2.75 0.26 1.31 1.57 2.46 0.26 1.31 1.57 2.41 0.26 1.31 1.57 2.43 0.26 1.31 1.57
3.33 2.67 2.78 2.99 2.81 2.24 3.07 3.58 2.51 2.04 3.27 3.96 2.46 2.00 3.32 4.06 2.48 1.95 3.37 4.44
A dv a n c e v 0. 3
2 - 31
IGLOOe DC and Switching Characteristics
2.5 V LVCMOS
Low-Voltage CMOS for 2.5 V is an extension of the LVCMOS standard (JESD8-5) used for generalpurpose 2.5 V applications. It uses a 5 V-tolerant input buffer and push-pull output buffer. Table 2-39 * Minimum and Maximum DC Input and Output Levels 2.5 V LVCMOS Drive Strength 4 mA 8 mA 12 mA 16 mA 24 mA Notes: 1. Currents are measured at 100C junction temperature and maximum voltage. 2. Currents are measured at 85C junction temperature. 3. Software default selection highlighted in gray. VIL VIH VOL VOH IOL IOH IOSH IOSL IIL IIH
Min., V Max., V Min., V Max., V Max., V Min., V mA mA Max., mA1 Max., mA1 A2 A2 -0.3 -0.3 -0.3 -0.3 -0.3 0.7 0.7 0.7 0.7 0.7 1.7 1.7 1.7 1.7 1.7 2.7 2.7 2.7 2.7 2.7 0.7 0.7 0.7 0.7 0.7 1.7 1.7 1.7 1.7 1.7 4 8 4 8 16 32 65 83 169 18 37 74 87 124 10 10 10 10 10 10 10 10 10 10
12 12 16 16 24 24
Test Point Datapath 35 pF
R=1k Test Point Enable Path
R to VCCI for tLZ/tZL/tZLS R to GND for tHZ/tZH/tZHS 35 pF for tZH/tZHS/tZL/tZLS 5 pF for tHZ/tLZ
Figure 2-8 * AC Loading Table 2-40 * AC Waveforms, Measuring Points, and Capacitive Loads Input LOW (V) 0 Input HIGH (V) 2.5 Measuring Point* (V) 1.2 VREF (typ.) (V) - CLOAD (pF) 5
* Measuring point = Vtrip. See Table 2-22 on page 2-22 for a complete table of trip points.
2 -3 2
A d v a n c e v 0. 3
IGLOOe DC and Switching Characteristics
Timing Characteristics
1.5 V DC Core Voltage Table 2-41 * 2.5 V LVCMOS Low Slew - Applies to 1.5 V DC Core Voltage Commercial-Case Conditions: TJ = 70C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V Drive Strength Speed Grade tDOUT 4 mA 8 mA 12 mA 16 mA 24 mA Std. Std. Std. Std. Std. 0.98 0.98 0.98 0.98 0.98 tDP tDIN tPY tPYS tEOUT 0.67 0.67 0.67 0.67 0.67 tZL tZH tLZ tHZ tZLS 9.44 8.42 7.70 7.48 7.38 tZHS 8.50 7.80 7.30 7.19 7.20 Units ns ns ns ns ns 5.70 0.19 1.34 1.45 4.71 0.19 1.34 1.45 4.00 0.19 1.34 1.45 3.78 0.19 1.34 1.45 3.69 0.19 1.34 1.45 5.81 4.87 2.34 2.01 4.79 4.17 2.65 2.60 4.07 3.67 2.86 2.99 3.85 3.56 2.90 3.09 3.75 3.57 2.96 3.46
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values. Table 2-42 * 2.5 V LVCMOS High Slew - Applies to 1.5 V DC Core Voltage Commercial-Case Conditions: TJ = 70C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V Drive Strength Speed Grade tDOUT 4 mA 8 mA 12 mA 16 mA 24 mA Notes: 1. Software default selection highlighted in gray. 2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values. Std. Std. Std. Std. Std. 0.98 0.98 0.98 0.98 0.98 tDP tDIN tPY tPYS tEOUT 0.67 0.67 0.67 0.67 0.67 tZL tZH tLZ tHZ tZLS 6.71 6.19 5.88 5.83 5.84 tZHS 6.37 5.80 5.52 5.47 5.40 Units ns ns ns ns ns
3.02 0.19 1.34 1.45 2.51 0.19 1.34 1.45 2.21 0.19 1.34 1.45 2.16 0.19 1.34 1.45 2.17 0.19 1.34 1.45
3.08 2.74 2.34 2.08 2.56 2.17 2.65 2.69 2.25 1.89 2.86 3.06 2.20 1.84 2.90 3.17 2.21 1.77 2.96 3.57
A dv a n c e v 0. 3
2 - 33
IGLOOe DC and Switching Characteristics 1.2 V DC Core Voltage Table 2-43 * 2.5 V LVCMOS Low Slew - Applies to 1.2 V DC Core Voltage Commercial-Case Conditions: TJ = 70C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 2.3 V Drive Strength 4 mA 8 mA 12 mA 16 mA 24 mA Speed Grade tDOUT Std. Std. Std. Std. Std. 1.55 1.55 1.55 1.55 1.55 tDP 6.24 5.17 4.41 4.18 4.08 tDIN tPY tPYS tEOUT 1.10 1.10 1.10 1.10 1.10 tZL 6.36 5.27 4.49 4.26 4.15 tZH 5.34 4.61 4.08 3.96 3.98 tLZ tHZ tZLS tZHS Units ns ns ns ns ns
0.26 1.55 1.76 0.26 1.55 1.76 0.26 1.55 1.76 0.26 1.55 1.76 0.26 1.55 1.76
2.80 2.61 12.17 11.15 3.12 3.30 11.08 10.42 3.34 3.75 10.30 3.39 3.87 10.06 3.45 4.30 9.96 9.89 9.77 9.79
Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-6 for derating values. Table 2-44 * 2.5 V LVCMOS High Slew - Applies to 1.2 V DC Core Voltage Commercial-Case Conditions: TJ = 70C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 2.3 V Drive Strength 4 mA 8 mA 12 mA 16 mA 24 mA Notes: 1. Software default selection highlighted in gray. 2. For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-6 for derating values. Speed Grade tDOUT Std. Std. Std. Std. Std. 1.55 1.55 1.55 1.55 1.55 tDP tDIN tPY tPYS tEOUT 1.10 1.10 1.10 1.10 1.10 tZL tZH tLZ tHZ tZLS 9.23 8.68 8.35 8.29 8.31 tZHS 8.92 8.32 8.03 7.97 7.90 Units ns ns ns ns ns
3.36 0.26 1.55 1.76 2.82 0.26 1.55 1.76 2.50 0.26 1.55 1.76 2.44 0.26 1.55 1.76 2.45 0.26 1.55 1.76
3.43 3.11 2.80 2.70 2.87 2.51 3.12 3.40 2.54 2.22 3.34 3.83 2.49 2.16 3.39 3.95 2.50 2.09 3.45 4.42
2 -3 4
A d v a n c e v 0. 3
IGLOOe DC and Switching Characteristics
1.8 V LVCMOS
Low-Voltage CMOS for 1.8 V is an extension of the LVCMOS standard (JESD8-5) used for generalpurpose 1.8 V applications. It uses a 1.8 V input buffer and a push-pull output buffer. Table 2-45 * Minimum and Maximum DC Input and Output Levels 1.8 V LVCMOS Drive Strength Min., V 2 mA 4 mA 6 mA 8 mA 12 mA 16 mA Notes: 1. Currents are measured at 100C junction temperature and maximum voltage. 2. Currents are measured at 85C junction temperature. 3. Software default selection highlighted in gray. -0.3 -0.3 -0.3 -0.3 -0.3 -0.3 VIL Max., V VIH Min., V VOL Max., V Max., V 1.9 1.9 1.9 1.9 1.9 1.9 0.45 0.45 0.45 0.45 0.45 0.45 VOH Min., V VCCI - 0.45 VCCI - 0.45 VCCI - 0.45 VCCI - 0.45 IOL IOH IOSH IOSL IIL IIH
mA mA Max., mA1 Max., mA1 A2 A2 2 4 6 8 2 4 6 8 9 17 35 45 91 91 11 22 44 51 74 74 10 10 10 10 10 10 10 10 10 10 10 10
0.35 * VCCI 0.65 * VCCI 0.35 * VCCI 0.65 * VCCI 0.35 * VCCI 0.65 * VCCI 0.35 * VCCI 0.65 * VCCI 0.35 * VCCI 0.65 * VCCI 0.35 * VCCI 0.65 * VCCI
VCCI - 0.45 12 12 VCCI - 0.45 16 16
Test Point Datapath 35 pF
R=1k Test Point Enable Path
R to VCCI for tLZ/tZL/tZLS R to GND for tHZ/tZH/tZHS 35 pF for tZH/tZHS/tZL/tZLS 5 pF for tHZ/tLZ
Figure 2-9 * AC Loading Table 2-46 * AC Waveforms, Measuring Points, and Capacitive Loads Input LOW (V) 0 Input HIGH (V) 1.8 Measuring Point* (V) 0.9 VREF (typ.) (V) - CLOAD (pF) 5
* Measuring point = Vtrip. See Table 2-22 on page 2-22 for a complete table of trip points.
A dv a n c e v 0. 3
2 - 35
IGLOOe DC and Switching Characteristics
Timing Characteristics
1.5 V DC Core Voltage Table 2-47 * 1.8 V LVCMOS Low Slew - Applies to 1.5 V DC Core Voltage Commercial-Case Conditions: TJ = 70C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.7 V Drive Strength 2 mA 4 mA 6 mA 8 mA 12 mA 16 mA Speed Grade tDOUT Std. Std. Std. Std. Std. Std. 0.98 0.98 0.98 0.98 0.98 0.98 tDP 7.53 6.24 5.33 5.02 4.93 4.93 tDIN tPY tPYS tEOUT 0.67 0.67 0.67 0.67 0.67 0.67 tZL 7.67 6.36 5.43 5.11 5.02 5.02 tZH 6.34 5.38 4.73 4.60 4.61 4.61 tLZ tHZ tZLS 9.99 9.06 8.74 8.65 8.65 tZHS 9.97 9.01 8.36 8.23 8.24 8.24 Units ns ns ns ns ns ns
0.19 1.30 1.63 0.19 1.30 1.63 0.19 1.30 1.63 0.19 1.30 1.63 0.19 1.30 1.63 0.19 1.30 1.63
2.40 1.21 11.30 2.77 2.48 3.01 2.96 3.07 3.09 3.15 3.57 3.15 3.57
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values. Table 2-48 * 1.8 V LVCMOS High Slew - Applies to 1.5 V DC Core Voltage Commercial-Case Conditions: TJ = 70C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.7 V Drive Strength 2 mA 4 mA 6 mA 8 mA 12 mA 16 mA Notes: 1. Software default selection highlighted in gray. 2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values. Speed Grade tDOUT Std. Std. Std. Std. Std. Std. 0.98 0.98 0.98 0.98 0.98 0.98 tDP tDIN tPY tPYS tEOUT 0.67 0.67 0.67 0.67 0.67 0.67 tZL tZH tLZ tHZ tZLS 7.22 6.59 6.20 6.12 6.11 6.11 tZHS 7.10 6.28 5.87 5.80 5.70 5.70 Units ns ns ns ns ns ns
3.53 0.19 1.30 1.63 2.90 0.19 1.30 1.63 2.52 0.19 1.30 1.63 2.45 0.19 1.30 1.63 2.44 0.19 1.30 1.63 2.44 0.19 1.30 1.63
3.59 3.47 2.39 1.23 2.96 2.65 2.76 2.56 2.57 2.24 3.01 3.03 2.49 2.17 3.07 3.17 2.48 2.07 3.15 3.67 2.48 2.07 3.15 3.67
2 -3 6
A d v a n c e v 0. 3
IGLOOe DC and Switching Characteristics 1.2 V DC Core Voltage Table 2-49 * 1.8 V LVCMOS Low Slew - Applies to 1.2 V DC Core Voltage Commercial-Case Conditions: TJ = 70C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.7 V Drive Strength 2 mA 4 mA 6 mA 8 mA 12 mA 16 mA Speed Grade tDOUT Std. Std. Std. Std. Std. Std. 1.55 1.55 1.55 1.55 1.55 1.55 tDP 8.20 6.82 5.84 5.51 5.41 5.41 tDIN tPY tPYS tEOUT 1.10 1.10 1.10 1.10 1.10 1.10 tZL 8.35 6.95 5.95 5.61 5.51 5.51 tZH 6.89 5.88 5.20 5.06 5.07 5.07 tLZ tHZ tZLS tZHS Units ns ns ns ns ns ns
0.26 1.53 1.95 0.26 1.53 1.95 0.26 1.53 1.95 0.26 1.53 1.95 0.26 1.53 1.95 0.26 1.53 1.95
2.86 1.68 14.16 12.69 3.25 3.16 12.75 11.69 3.51 3.71 11.75 11.00 3.58 3.87 11.42 10.87 3.66 4.42 11.32 10.88 3.66 4.42 11.32 10.88
Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-6 for derating values. Table 2-50 * 1.8 V LVCMOS High Slew - Applies to 1.2 V DC Core Voltage Commercial-Case Conditions: TJ = 70C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.7 V Drive Strength 2 mA 4 mA 6 mA 8 mA 12 mA 16 mA Notes: 1. Software default selection highlighted in gray. 2. For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-6 for derating values. Speed Grade tDOUT Std. Std. Std. Std. Std. Std. 1.55 1.55 1.55 1.55 1.55 1.55 tDP 3.91 3.24 2.83 2.75 2.74 2.74 tDIN tPY tPYS tEOUT 1.10 1.10 1.10 1.10 1.10 1.10 tZL 3.98 3.30 2.88 2.80 2.79 2.79 tZH 3.88 3.01 2.58 2.51 2.41 2.41 tLZ tHZ tZLS 9.79 9.11 8.69 8.61 8.60 8.60 tZHS 9.68 8.82 8.39 8.31 8.21 8.21 Units ns ns ns ns ns ns
0.26 1.53 1.95 0.26 1.53 1.95 0.26 1.53 1.95 0.26 1.53 1.95 0.26 1.53 1.95 0.26 1.53 1.95
2.85 1.70 3.24 3.25 3.51 3.80 3.57 3.95 3.66 4.54 3.66 4.54
A dv a n c e v 0. 3
2 - 37
IGLOOe DC and Switching Characteristics
1.5 V LVCMOS (JESD8-11)
Low-Voltage CMOS for 1.5 V is an extension of the LVCMOS standard (JESD8-5) used for generalpurpose 1.5 V applications. It uses a 1.5 V input buffer and a push-pull output buffer. Table 2-51 * Minimum and Maximum DC Input and Output Levels 1.5 V LVCMOS Drive Strength Min., V 2 mA 4 mA 6 mA 8 mA 12 mA Notes: 1. Currents are measured at 100C junction temperature and maximum voltage. 2. Currents are measured at 85C junction temperature. 3. Software default selection highlighted in gray. -0.3 -0.3 -0.3 -0.3 -0.3 VIL Max., V VIH Min., V Max., V VOL Max., V VOH Min., V IOL IOH IOSH IOSL IIL IIH
mA mA Max., mA1 Max., mA1 A2 A2 2 4 6 8 2 4 6 8 13 25 32 66 66 16 33 39 55 55 10 10 10 10 10 10 10 10 10 10
0.35 * VCCI 0.65 * VCCI 1.575 0.25 * VCCI 0.75 * VCCI 0.35 * VCCI 0.65 * VCCI 1.575 0.25 * VCCI 0.75 * VCCI 0.35 * VCCI 0.65 * VCCI 1.575 0.25 * VCCI 0.75 * VCCI 0.35 * VCCI 0.65 * VCCI 1.575 0.25 * VCCI 0.75 * VCCI
0.35 * VCCI 0.65 * VCCI 1.575 0.25 * VCCI 0.75 * VCCI 12 12
Test Point Datapath 35 pF
R=1k Test Point Enable Path
R to VCCI for tLZ/tZL/tZLS R to GND for tHZ/tZH/tZHS 35 pF for tZH/tZHS/tZL/tZLS 5 pF for tHZ/tLZ
Figure 2-10 * AC Loading Table 2-52 * AC Waveforms, Measuring Points, and Capacitive Loads Input LOW (V) 0 Input HIGH (V) 1.5 Measuring Point* (V) 0.75 VREF (typ.) (V) - CLOAD (pF) 5
* Measuring point = Vtrip. See Table 2-22 on page 2-22 for a complete table of trip points.
2 -3 8
A d v a n c e v 0. 3
IGLOOe DC and Switching Characteristics
Timing Characteristics
1.5 V DC Core Voltage Table 2-53 * 1.5 V LVCMOS Low Slew - Applies to 1.5 V DC Core Voltage Commercial-Case Conditions: TJ = 70C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.4 V Drive Strength 2 mA 4 mA 6 mA 8 mA 12 mA Speed Grade tDOUT Std. Std. Std. Std. Std. 0.98 0.98 0.98 0.98 0.98 tDP 7.82 6.72 6.32 6.24 6.24 tDIN tPY tPYS tEOUT 0.67 0.67 0.67 0.67 0.67 tZL 7.97 6.84 6.44 6.36 6.36 tZH 6.49 5.71 5.56 5.56 5.56 tLZ tHZ tZLS tZHS 9.34 9.19 9.19 9.19 Units ns ns ns ns ns
0.19 1.50 1.82 0.19 1.50 1.82 0.19 1.50 1.82 0.19 1.50 1.82 0.19 1.50 1.82
2.89 2.41 11.60 10.12 3.17 2.96 10.47 3.24 3.11 10.07 3.33 3.66 3.33 3.66 9.99 9.99
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values. Table 2-54 * 1.5 V LVCMOS High Slew - Applies to 1.5 V DC Core Voltage Commercial-Case Conditions: TJ = 70C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.4 V Drive Strength 2 mA 4 mA 6 mA 8 mA 12 mA Notes: 1. Software default selection highlighted in gray. 2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values. Speed Grade tDOUT Std. Std. Std. Std. Std. 0.98 0.98 0.98 0.98 0.98 tDP tDIN tPY tPYS tEOUT 0.67 0.67 0.67 0.67 0.67 tZL tZH tLZ tHZ tZLS tZHS 6.70 6.20 7.42 5.98 5.98 Units ns ns ns ns ns
3.34 0.19 1.50 1.82 2.88 0.19 1.50 1.82 3.90 0.19 1.50 1.82 2.77 0.19 1.50 1.82 2.77 0.19 1.50 1.82
3.41 3.07 2.88 2.50 7.04 2.94 2.57 3.17 3.05 6.57 3.97 3.79 3.17 3.20 7.60 2.82 2.35 3.33 3.78 6.45 2.82 2.35 3.33 3.78 6.45
A dv a n c e v 0. 3
2 - 39
IGLOOe DC and Switching Characteristics 1.2 V DC Core Voltage Table 2-55 * 1.5 V LVCMOS Low Slew - Applies to 1.2 V DC Core Voltage Commercial-Case Conditions: TJ = 70C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.4 V Drive Strength 2 mA 4 mA 6 mA 8 mA 12 mA Speed Grade tDOUT Std. Std. Std. Std. Std. 1.55 1.55 1.55 1.55 1.55 tDP 8.51 7.33 6.90 6.82 6.82 tDIN tPY tPYS tEOUT 1.10 1.10 1.10 1.10 1.10 tZL 8.67 7.47 7.03 6.95 6.95 tZH 7.05 6.22 6.07 6.07 6.07 tLZ tHZ tZLS tZHS Units ns ns ns ns ns
0.26 1.72 2.15 0.26 1.72 2.15 0.26 1.72 2.15 0.26 1.72 2.15 0.26 1.72 2.15
3.38 3.07 14.48 12.86 3.69 3.71 13.27 12.03 3.75 3.88 12.84 11.88 3.86 4.52 12.75 11.88 3.86 4.52 12.75 11.88
Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-6 for derating values. Table 2-56 * 1.5 V LVCMOS High Slew - Applies to 1.2 V DC Core Voltage Commercial-Case Conditions: TJ = 70C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.4 V Drive Strength 2 mA 4 mA 6 mA 8 mA 12 mA Notes: 1. Software default selection highlighted in gray. 2. For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-6 for derating values. Speed Grade tDOUT Std. Std. Std. Std. Std. 1.55 1.55 1.55 1.55 1.55 tDP tDIN tPY tPYS tEOUT 1.10 1.10 1.10 1.10 1.10 tZL tZH tLZ tHZ tZLS 9.59 9.09 tZHS 9.26 8.73 Units ns ns ns ns ns
3.71 0.26 1.72 2.15 3.22 0.26 1.72 2.15 4.30 0.26 1.72 2.15 3.09 0.26 1.72 2.15 3.09 0.26 1.72 2.15
3.78 3.46 3.37 3.18 3.28 2.92 3.68 3.81
4.38 4.21 3.69 4.00 10.19 10.02 3.15 2.70 3.85 4.66 3.15 2.70 3.85 4.66 8.96 8.96 8.51 8.51
2 -4 0
A d v a n c e v 0. 3
IGLOOe DC and Switching Characteristics
1.2 V LVCMOS (JESD8-12A)
Low-Voltage CMOS for 1.2 V complies with the LVCMOS standard JESD8-12A for general purpose 1.2 V applications. It uses a 1.2 V input buffer and a push-pull output buffer. Table 2-57 * Minimum and Maximum DC Input and Output Levels Applicable to Advanced I/O Banks 1.2 V LVCMOS Drive Strength Min., V 2 mA Notes: 1. Currents are measured at 100C junction temperature and maximum voltage. 2. Currents are measured at 85C junction temperature. 3. Software default selection highlighted in gray. -0.3 VIL Max., V VIH Min., V Max., V 1.26 VOL Max., V VOH Min., V IOL IOH IOSH IOSL IIL IIH
mA mA Max., mA1 Max., mA1 A2 A2 2 TBD TBD 10 10
0.35 * VCCI 0.65 * VCCI
0.25 * VCCI 0.75 * VCCI 2
Test Point Datapath 5 pF
R=1k Test Point Enable Path
R to VCCI for tLZ/tZL/tZLS R to GND for tHZ/tZH/tZHS 35 pF for tZH/tZHS/tZL/tZLS 5 pF for tHZ/tLZ
Figure 2-11 * AC Loading Table 2-58 * AC Waveforms, Measuring Points, and Capacitive Loads Input LOW (V) 0 Input HIGH (V) 1.2 Measuring Point* (V) 0.6 CLOAD (pF) 5
* Measuring point = Vtrip. See Table 2-22 on page 2-22 for a complete table of trip points.
Timing Characteristics
1.2 V DC Core Voltage Table 2-59 * 1.2 LVCMOS Low Slew - Applies to 1.2 V DC Core Voltage Commercial-Case Conditions: TJ = 70C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.14 V Drive Strength 2 mA Notes: 1. Software default selection highlighted in gray. 2. For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-6 for derating values. Table 2-60 * 1.2 LVCMOS High Slew - Applies to 1.2 V DC Core Voltage Commercial-Case Conditions: TJ = 70C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.14 V Drive Strength 2 mA Notes: 1. Software default selection highlighted in gray. 2. For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-6 for derating values. Speed Grade tDOUT Std. 1.55 tDP tDIN tPY tPYS tEOUT 1.10 tZL tZH tLZ tHZ 4.02 tZLS 9.49 tZHS 9.03 Units ns Speed Grade tDOUT Std. 1.55 tDP tDIN tPY tPYS tEOUT 1.10 tZL tZH tLZ tHZ 4.03 tZLS tZHS Units ns
9.93 0.26 2.06 2.96
9.50 7.45 3.68
15.10 13.05
4.07 0.26 2.06 2.96
3.90 3.43 3.80
A dv a n c e v 0. 3
2 - 41
IGLOOe DC and Switching Characteristics
3.3 V PCI, 3.3 V PCI-X
Peripheral Component Interface for 3.3 V standard specifies support for 33 MHz and 66 MHz PCI Bus applications. Table 2-61 * Minimum and Maximum DC Input and Output Levels IO 3.3 V PCI/PCI-X Drive Strength Per PCI specification Notes: 1. Currents are measured at 100C junction temperature and maximum voltage. 2. Currents are measured at 85C junction temperature. AC loadings are defined per the PCI/PCI-X specifications for the datapath; Actel loadings for enable path characterization are described in Figure 2-12. Min., V VIL Max., V Min., V VIH Max., V VOL Max., V VOH Min., V IOL m A
H
IOSH
IOSL
IIL
IIH
m A A 2 A Max., mA1 Max., mA1 2 10 10
Per PCI curves
R = 25 Test Point Datapath
R to VCCI for tDP (F) R to GND for tDP (R)
R=1k Test Point Enable Path
R to VCCI for tLZ/tZL/t ZLS R to GND for tHZ /tZH /t ZHS 10 pF for tZH /tZHS /tZL /t ZLS 5 pF for tHZ /tLZ
Figure 2-12 * AC Loading AC loadings are defined per PCI/PCI-X specifications for the datapath; Actel loading for tristate is described in Table 2-62. Table 2-62 * AC Waveforms, Measuring Points, and Capacitive Loads Input LOW (V) 0 Input HIGH (V) 3.3 Measuring Point* (V) 0.285 * VCCI for tDP(R) 0.615 * VCCI for tDP(F) * Measuring point = Vtrip. See Table 2-22 on page 2-22 for a complete table of trip points. VREF (typ.) (V) - CLOAD (pF) 10
2 -4 2
A d v a n c e v 0. 3
IGLOOe DC and Switching Characteristics
Timing Characteristics 1.5 V DC Core Voltage
Table 2-63 * 3.3 V PCI/PCI-X - Applies to 1.5 V DC Core Voltage Commercial-Case Conditions: TJ = 70C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V Speed Grade Std. tDOUT 0.98 tDP 2.44 tDIN 0.19 tPY 0.98 tPYS 1.45 tEOUT 0.67 tZL 2.49 tZH 1.84 tLZ 2.79 tHZ 3.17 tZLS 6.12 tZHS 5.47 Units ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.
1.2 V DC Core Voltage
Table 2-64 * 3.3 V PCI/PCI-X - Applies to 1.2 V DC Core Voltage Commercial-Case Conditions: TJ = 70C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 3.0 V Speed Grade Std. tDOUT 1.55 tDP 2.74 tDIN 0.26 tPY 1.19 tPYS 1.63 tEOUT 1.10 tZL 2.80 tZH 2.16 tLZ 3.28 tHZ 3.96 tZLS 8.60 tZHS 7.97 Units ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-6 for derating values.
A dv a n c e v 0. 3
2 - 43
IGLOOe DC and Switching Characteristics
Voltage-Referenced I/O Characteristics
3.3 V GTL
Gunning Transceiver Logic is a high-speed bus standard (JESD8-3). It provides a differential amplifier input buffer and an open-drain output buffer. The VCCI pin should be connected to 3.3 V. Table 2-65 * Minimum and Maximum DC Input and Output Levels 3.3 V GTL Drive Strength 25 mA3 Notes: 1. Currents are measured at 100C junction temperature and maximum voltage. 2. Currents are measured at 85C junction temperature. 3. Output drive strength is below JEDEC specification. Min., V -0.3 VIL Max., V VIH Min., V VOL VOH IOL IOH IOSL IOSH IIL IIH
Max., V Max., V Min., V mA mA Max., mA1 Max., mA1 A2 A2 3.6 0.4 - 25 25 268 181 10 10
VREF - 0.05 VREF + 0.05
VTT GTL Test Point 10 pF 25
Figure 2-13 * AC Loading Table 2-66 * AC Waveforms, Measuring Points, and Capacitive Loads Input LOW (V) VREF - 0.05 Input HIGH (V) VREF + 0.05 Measuring Point* (V) 0.8 VREF (typ.) (V) 0.8 VTT (typ.) (V) 1.2 CLOAD (pF) 10
* Measuring point = Vtrip. See Table 2-22 on page 2-22 for a complete table of trip points.
2 -4 4
A d v a n c e v 0. 3
IGLOOe DC and Switching Characteristics
Timing Characteristics
1.5 V DC Core Voltage Table 2-67 * 3.3 V GTL - Applies to 1.5 V DC Core Voltage Commercial-Case Conditions: TJ = 70C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V VREF = 0.8 V Speed Grade Std. tDOUT 0.98 tDP 1.83 tDIN 0.19 tPY 2.41 tEOUT 0.67 tZL 1.84 tZH 1.83 tLZ tHZ tZLS 5.47 tZHS 5.46 Units ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values. 1.2 V DC Core Voltage Table 2-68 * 3.3 V GTL - Applies to 1.2 V DC Core Voltage Commercial-Case Conditions: TJ = 70C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 3.0 V VREF = 0.8 V Speed Grade Std. tDOUT 1.55 tDP 2.09 tDIN 0.26 tPY 2.75 tEOUT 1.10 tZL 2.10 tZH 2.09 tLZ tHZ tZLS 7.91 tZHS 7.89 Units ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-6 for derating values.
A dv a n c e v 0. 3
2 - 45
IGLOOe DC and Switching Characteristics
2.5 V GTL
Gunning Transceiver Logic is a high-speed bus standard (JESD8-3). It provides a differential amplifier input buffer and an open-drain output buffer. The VCCI pin should be connected to 2.5 V. Table 2-69 * Minimum and Maximum DC Input and Output Levels 2.5 GTL Drive Strength Min., V 25 mA3 Notes: 1. Currents are measured at 100C junction temperature and maximum voltage. 2. Currents are measured at 85C junction temperature. 3. Output drive strength is below JEDEC specification. -0.3 VIL Max., V VIH Min., V VOL VOH IOL IOH IOSH
1
IOSL
1
IIL
2
IIH
Max., V Max., V Min., V mA mA Max., mA Max., mA A A2 3.6 0.4 - 25 25 169 124 10 10
VREF - 0.05 VREF + 0.05
VTT GTL Test Point 10 pF 25
Figure 2-14 * AC Loading Table 2-70 * AC Waveforms, Measuring Points, and Capacitive Loads Input LOW (V) VREF - 0.05 Input HIGH (V) VREF + 0.05 Measuring Point* (V) 0.8 VREF (typ.) (V) 0.8 VTT (typ.) (V) 1.2 CLOAD (pF) 10
* Measuring point = Vtrip. See Table 2-22 on page 2-22 for a complete table of trip points.
2 -4 6
A d v a n c e v 0. 3
IGLOOe DC and Switching Characteristics
Timing Characteristics
1.5 V DC Core Voltage Table 2-71 * 2.5 V GTL - Applies to 1.5 V DC Core Voltage Commercial-Case Conditions: TJ = 70C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V VREF = 0.8 V Speed Grade Std. tDOUT 0.98 tDP 1.90 tDIN 0.19 tPY 2.04 tEOUT 0.67 tZL 1.94 tZH 1.87 tLZ tHZ tZLS 5.57 tZHS 5.50 Units ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values. 1.2 V DC Core Voltage Table 2-72 * 2.5 V GTL - Applies to 1.2 V DC Core Voltage Commercial-Case Conditions: TJ = 70C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 3.0 V VREF = 0.8 V Speed Grade Std. tDOUT 1.55 tDP 2.16 tDIN 0.26 tPY 2.35 tEOUT 1.10 tZL 2.20 tZH 2.13 tLZ tHZ tZLS 8.01 tZHS 7.94 Units ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-6 for derating values.
A dv a n c e v 0. 3
2 - 47
IGLOOe DC and Switching Characteristics
3.3 V GTL+
Gunning Transceiver Logic Plus is a high-speed bus standard (JESD8-3). It provides a differential amplifier input buffer and an open-drain output buffer. The VCCI pin should be connected to 3.3 V Table 2-73 * Minimum and Maximum DC Input and Output Levels 3.3 V GTL+ VIL VIH Min., V VOL VOH IOL IOH IOSH
1
IOSL
1
IIL
2
IIH
Drive Strength Min., V Max., V 35 mA Notes: -0.3
Max., V Max., V Min., V mA mA Max., mA Max., mA A A2 3.6 0.6 - 35 35 268 181 10 10
VREF - 0.1 VREF + 0.1
1. Currents are measured at 100C junction temperature and maximum voltage. 2. Currents are measured at 85C junction temperature.
VTT GTL+ Test Point 10 pF 25
Figure 2-15 * AC Loading Table 2-74 * AC Waveforms, Measuring Points, and Capacitive Loads Input LOW (V) VREF - 0.1 Input HIGH (V) VREF + 0.1 Measuring Point* (V) 1.0 VREF (typ.) (V) 1.0 VTT (typ.) (V) 1.5 CLOAD (pF) 10
* Measuring point = Vtrip. See Table 2-22 on page 2-22 for a complete table of trip points.
2 -4 8
A d v a n c e v 0. 3
IGLOOe DC and Switching Characteristics
Timing Characteristics
1.5 V DC Core Voltage Table 2-75 * 3.3 V GTL+ - Applies to 1.5 V DC Core Voltage Commercial-Case Conditions: TJ = 70C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V VREF = 1.0 V Speed Grade Std. tDOUT 0.98 tDP 1.85 tDIN 0.19 tPY 1.35 tEOUT 0.67 tZL 1.88 tZH 1.81 tLZ tHZ tZLS 5.51 tZHS 5.44 Units ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values. 1.2 V DC Core Voltage Table 2-76 * 3.3 V GTL+ - Applies to 1.2 V DC Core Voltage Commercial-Case Conditions: TJ = 70C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 3.0 V VREF = 1.0 V Speed Grade Std. tDOUT 1.55 tDP 2.11 tDIN 0.26 tPY 1.61 tEOUT 1.10 tZL 2.15 tZH 2.07 tLZ tHZ tZLS 7.95 tZHS 7.88 Units ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-6 for derating values.
A dv a n c e v 0. 3
2 - 49
IGLOOe DC and Switching Characteristics
2.5 V GTL+
Gunning Transceiver Logic Plus is a high-speed bus standard (JESD8-3). It provides a differential amplifier input buffer and an open-drain output buffer. The VCCI pin should be connected to 2.5 V. Table 2-77 * Minimum and Maximum DC Input and Output Levels 2.5 V GTL+ VIL VIH Min., V VOL VOH IOL IOH IOSH
1
IOSL
1
IIL
2
IIH
Drive Strength Min., V Max., V 33 mA Notes: -0.3
Max., V Max., V Min., V mA mA Max., mA Max., mA A A2 3.6 0.6 - 33 33 169 124 10 10
VREF - 0.1 VREF + 0.1
1. Currents are measured at 100C junction temperature and maximum voltage. 2. Currents are measured at 85C junction temperature.
VTT GTL+ Test Point 10 pF 25
Figure 2-16 * AC Loading Table 2-78 * AC Waveforms, Measuring Points, and Capacitive Loads Input LOW (V) VREF - 0.1 Input HIGH (V) VREF + 0.1 Measuring Point* (V) 1.0 VREF (typ.) (V) 1.0 VTT (typ.) (V) 1.5 CLOAD (pF) 10
* Measuring point = Vtrip. See Table 2-22 on page 2-22 for a complete table of trip points.
2 -5 0
A d v a n c e v 0. 3
IGLOOe DC and Switching Characteristics
Timing Characteristics
1.5 V DC Core Voltage Table 2-79 * 2.5 V GTL+ - Applies to 1.5 V DC Core Voltage Commercial-Case Conditions: TJ = 70C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V VREF = 1.0 V Speed Grade Std. tDOUT 0.98 tDP 1.97 tDIN 0.19 tPY 1.29 tEOUT 0.67 tZL 2.00 tZH 1.84 tLZ tHZ tZLS 5.63 tZHS 5.47 Units ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values. 1.2 V DC Core Voltage Table 2-80 * 2.5 V GTL+ - Applies to 1.2 V DC Core Voltage Commercial-Case Conditions: TJ = 70C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 2.3 V VREF = 1.0 V Speed Grade Std. tDOUT 1.55 tDP 2.23 tDIN 0.26 tPY 1.55 tEOUT 1.10 tZL 2.28 tZH 2.11 tLZ tHZ tZLS 8.08 tZHS 7.91 Units ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-6 for derating values.
A dv a n c e v 0. 3
2 - 51
IGLOOe DC and Switching Characteristics
HSTL Class I
High-Speed Transceiver Logic is a general-purpose high-speed 1.5 V bus standard (EIA/JESD8-6). IGLOOe devices support Class I. This provides a differential amplifier input buffer and a push-pull output buffer. Table 2-81 * Minimum and Maximum DC Input and Output Levels HSTL Class I VIL VIH Min., V VOL VOH IOL IOH IOSH
1
IOSL
1
IIL
2
IIH
Drive Strength Min., V Max., V 8 mA Notes: -0.3
Max., V Max., V Min., V mA mA Max., mA Max., mA A A2 3.6 0.4 VCCI - 0.4 8 8 32 39 10 10
VREF - 0.1 VREF + 0.1
1. Currents are measured at 100C junction temperature and maximum voltage. 2. Currents are measured at 85C junction temperature.
HSTL Class I Test Point
VTT 50 20 pF
Figure 2-17 * AC Loading Table 2-82 * AC Waveforms, Measuring Points, and Capacitive Loads Input LOW (V) VREF - 0.1 Input HIGH (V) VREF + 0.1 Measuring Point* (V) 0.75 VREF (typ.) (V) 0.75 VTT (typ.) (V) 0.75 CLOAD (pF) 20
* Measuring point = Vtrip. See Table 2-22 on page 2-22 for a complete table of trip points.
2 -5 2
A d v a n c e v 0. 3
IGLOOe DC and Switching Characteristics
Timing Characteristics
1.5 V DC Core Voltage Table 2-83 * HSTL Class I - Applies to 1.5 V DC Core Voltage Commercial-Case Conditions: TJ = 70C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.4 V VREF = 0.75 V Speed Grade Std. tDOUT 0.98 tDP 2.74 tDIN 0.19 tPY 1.77 tEOUT 0.67 tZL 2.79 tZH 2.73 tLZ tHZ tZLS 6.42 tZHS 6.36 Units ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values. 1.2 V DC Core Voltage Table 2-84 * HSTL Class I - Applies to 1.2 V DC Core Voltage Commercial-Case Conditions: TJ = 70C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.4 V VREF = 0.75 V Speed Grade Std. tDOUT 1.55 tDP 3.10 tDIN 0.26 tPY 1.94 tEOUT 1.10 tZL 3.12 tZH 3.10 tLZ tHZ tZLS 8.93 tZHS 8.91 Units ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-6 for derating values.
A dv a n c e v 0. 3
2 - 53
IGLOOe DC and Switching Characteristics
HSTL Class II
High-Speed Transceiver Logic is a general-purpose high-speed 1.5 V bus standard (EIA/JESD8-6). IGLOOe devices support Class II. This provides a differential amplifier input buffer and a push-pull output buffer. Table 2-85 * Minimum and Maximum DC Input and Output Levels HSTL Class II VIL VIH Min., V VOL VOH IOL IOH IOSH
1
IOSL
1
IIL
2
IIH
Drive Strength Min., V Max., V 15 mA3 Notes: -0.3
Max., V Max., V Min., V mA mA Max., mA Max., mA A A2 3.6 0.4 VCCI - 0.4 15 15 66 55 10 10
VREF - 0.1 VREF + 0.1
1. Currents are measured at 100C junction temperature and maximum voltage. 2. Currents are measured at 85C junction temperature. 3. Output drive strength is below JEDEC specification.
HSTL Class II Test Point
VTT 25 20 pF
Figure 2-18 * AC Loading Table 2-86 * AC Waveforms, Measuring Points, and Capacitive Loads Input LOW (V) VREF - 0.1 Input HIGH (V) VREF + 0.1 Measuring Point* (V) 0.75 VREF (typ.) (V) 0.75 VTT (typ.) (V) 0.75 CLOAD (pF) 20
* Measuring point = Vtrip. See Table 2-22 on page 2-22 for a complete table of trip points.
2 -5 4
A d v a n c e v 0. 3
IGLOOe DC and Switching Characteristics
Timing Characteristics
1.5 V DC Core Voltage Table 2-87 * HSTL Class II - Applies to 1.5 V DC Core Voltage Commercial-Case Conditions: TJ = 70C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.4 V VREF = 0.75 V Speed Grade Std. tDOUT 0.98 tDP 2.62 tDIN 0.19 tPY 1.77 tEOUT 0.67 tZL 2.66 tZH 2.40 tLZ tHZ tZLS 6.29 tZHS 6.03 Units ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values. 1.2 V DC Core Voltage Table 2-88 * HSTL Class II - Applies to 1.2 V DC Core Voltage Commercial-Case Conditions: TJ = 70C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.4 V VREF = 0.75 V Speed Grade Std. tDOUT 1.55 tDP 2.93 tDIN 0.26 tPY 1.94 tEOUT 1.10 tZL 2.98 tZH 2.75 tLZ tHZ tZLS 8.79 tZHS 8.55 Units ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-6 for derating values.
A dv a n c e v 0. 3
2 - 55
IGLOOe DC and Switching Characteristics
SSTL2 Class I
Stub-Speed Terminated Logic for 2.5 V memory bus standard (JESD8-9). IGLOOe devices support Class I. This provides a differential amplifier input buffer and a push-pull output buffer. Table 2-89 * Minimum and Maximum DC Input and Output Levels SSTL2 Class I VIL VIH VOL VOH Min., V IOL IOH IOSH
1
IOSL
1
IIL
2
IIH
Drive Strength Min., V Max., V 15 mA Notes: -0.3
Min., V Max., V Max., V 3.6 0.54
mA mA Max., mA Max., mA A A2 83 87 10 10
VREF - 0.2 VREF + 0.2
VCCI - 0.62 15 15
1. Currents are measured at 100C junction temperature and maximum voltage. 2. Currents are measured at 85C junction temperature.
SSTL2 Class I Test Point 25
VTT 50 30 pF
Figure 2-19 * AC Loading Table 2-90 * AC Waveforms, Measuring Points, and Capacitive Loads Input LOW (V) VREF - 0.2 Input HIGH (V) VREF + 0.2 Measuring Point* (V) 1.25 VREF (typ.) (V) 1.25 VTT (typ.) (V) 1.25 CLOAD (pF) 30
* Measuring point = Vtrip. See Table 2-22 on page 2-22 for a complete table of trip points.
2 -5 6
A d v a n c e v 0. 3
IGLOOe DC and Switching Characteristics
Timing Characteristics
1.5 V DC Core Voltage Table 2-91 * SSTL 2 Class I - Applies to 1.5 V DC Core Voltage Commercial-Case Conditions: TJ = 70C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V VREF = 1.25 V Speed Grade Std. tDOUT 0.98 tDP 1.91 tDIN 0.19 tPY 1.15 tEOUT 0.67 tZL 1.94 tZH 1.72 tLZ tHZ tZLS 5.57 tZHS 5.35 Units ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values. 1.2 V DC Core Voltage Table 2-92 * SSTL 2 Class I - Applies to 1.2 V DC Core Voltage Commercial-Case Conditions: TJ = 70C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 2.3 V VREF = 1.25 V Speed Grade Std. tDOUT 1.55 tDP 2.17 tDIN 0.26 tPY 1.39 tEOUT 1.10 tZL 2.21 tZH 2.04 tLZ tHZ tZLS 8.02 tZHS 7.84 Units ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-6 for derating values.
A dv a n c e v 0. 3
2 - 57
IGLOOe DC and Switching Characteristics
SSTL2 Class II
Stub-Speed Terminated Logic for 2.5 V memory bus standard (JESD8-9). IGLOOe devices support Class II. This provides a differential amplifier input buffer and a push-pull output buffer. Table 2-93 * Minimum and Maximum DC Input and Output Levels SSTL2 Class II VIL VIH Min., V VOL Max., V Max., V 3.6 0.35 VOH Min., V IOL IOH IOSH
1
IOSL
1
IIL
2
IIH
Drive Strength Min., V Max., V 18 mA Notes: -0.3
mA mA Max., mA Max., mA A A2 169 124 10 10
VREF - 0.2 VREF + 0.2
VCCI - 0.43 18 18
1. Currents are measured at 100C junction temperature and maximum voltage. 2. Currents are measured at 85C junction temperature.
SSTL2 Class II Test Point 25
VTT 25 30 pF
Figure 2-20 * AC Loading Table 2-94 * AC Waveforms, Measuring Points, and Capacitive Loads Input LOW (V) VREF - 0.2 Input HIGH (V) VREF + 0.2 Measuring Point* (V) 1.25 VREF (typ.) (V) 1.25 VTT (typ.) (V) 1.25 CLOAD (pF) 30
* Measuring point = Vtrip. See Table 2-22 on page 2-22 for a complete table of trip points.
Timing Characteristics
1.5 V DC Core Voltage Table 2-95 * SSTL 2 Class II - Applies to 1.5 V DC Core Voltage Commercial-Case Conditions: TJ = 70C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V VREF = 1.25 V Speed Grade Std. tDOUT 0.98 tDP 1.94 tDIN 0.19 tPY 1.15 tEOUT 0.67 tZL 1.97 tZH 1.66 tLZ tHZ tZLS 5.60 tZHS 5.29 Units ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values. 1.2 V DC Core Voltage Table 2-96 * SSTL 2 Class II - Applies to 1.2 V DC Core Voltage Commercial-Case Conditions: TJ = 70C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 2.3 V VREF = 1.25 V Speed Grade Std. tDOUT 1.55 tDP 2.20 tDIN 0.26 tPY 1.39 tEOUT 1.10 tZL 2.24 tZH 1.97 tLZ tHZ tZLS 8.05 tZHS 7.78 Units ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-6 for derating values.
2 -5 8
A d v a n c e v 0. 3
IGLOOe DC and Switching Characteristics
SSTL3 Class I
Stub-Speed Terminated Logic for 3.3 V memory bus standard (JESD8-8). IGLOOe devices support Class I. This provides a differential amplifier input buffer and a push-pull output buffer. Table 2-97 * Minimum and Maximum DC Input and Output Levels SSTL3 Class I VIL VIH VOL VOH IOL IOH IOSH
1
IOSL
1
IIL
2
IIH
Drive Strength Min., V Max., V 14 mA Notes: -0.3
Min., V Max., V Max., V Min., V mA mA Max., mA Max., mA A A2 3.6 0.7 VCCI - 1.1 14 14 54 51 10 10
VREF - 0.2 VREF + 0.2
1. Currents are measured at 100C junction temperature and maximum voltage. 2. Currents are measured at 85C junction temperature.
SSTL3 Class I Test Point 25
VTT 50 30 pF
Figure 2-21 * AC Loading Table 2-98 * AC Waveforms, Measuring Points, and Capacitive Loads Input LOW (V) VREF - 0.2 Input HIGH (V) VREF + 0.2 Measuring Point* (V) 1.5 VREF (typ.) (V) 1.5 VTT (typ.) (V) 1.485 CLOAD (pF) 30
* Measuring point = Vtrip. See Table 2-22 on page 2-22 for a complete table of trip points.
A dv a n c e v 0. 3
2 - 59
IGLOOe DC and Switching Characteristics
Timing Characteristics
1.5 V DC Core Voltage Table 2-99 * SSTL 3 Class I - Applies to 1.5 V DC Core Voltage Commercial-Case Conditions: TJ = 70C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V VREF = 1.5 V Speed Grade Std. tDOUT 0.98 tDP 2.05 tDIN 0.19 tPY 1.09 tEOUT 0.67 tZL 2.09 tZH 1.71 tLZ tHZ tZLS 5.72 tZHS 5.34 Units ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values. 1.2 V DC Core Voltage Table 2-100 * SSTL 3 Class I - Applies to 1.2 V DC Core Voltage Commercial-Case Conditions: TJ = 70C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 3.0 V VREF = 1.5 V Speed Grade Std. tDOUT 1.55 tDP 2.32 tDIN 0.26 tPY 1.32 tEOUT 1.10 tZL 2.37 tZH 2.02 tLZ tHZ tZLS 8.17 tZHS 7.83 Units ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-6 for derating values.
2 -6 0
A d v a n c e v 0. 3
IGLOOe DC and Switching Characteristics
SSTL3 Class II
Stub-Speed Terminated Logic for 3.3 V memory bus standard (JESD8-8). IGLOOe devices support Class II. This provides a differential amplifier input buffer and a push-pull output buffer. Table 2-101 * Minimum and Maximum DC Input and Output Levels SSTL3 Class II VIL VIH Min., V VOL VOH IOL IOH IOSH
1
IOSL
1
IIL
2
IIH
Drive Strength Min., V Max., V 21 mA Notes: -0.3
Max., V Max., V Min., V mA mA Max., mA Max., mA A A2 3.6 0.5 VCCI - 0.9 21 21 103 109 10 10
VREF - 0.2 VREF + 0.2
1. Currents are measured at 100C junction temperature and maximum voltage. 2. Currents are measured at 85C junction temperature.
SSTL3 Class II Test Point 25
VTT 25 30 pF
Figure 2-22 * AC Loading Table 2-102 * AC Waveforms, Measuring Points, and Capacitive Loads Input LOW (V) VREF - 0.2 Input HIGH (V) VREF + 0.2 Measuring Point* (V) 1.5 VREF (typ.) (V) 1.5 VTT (typ.) (V) 1.485 CLOAD (pF) 30
Note: Measuring point = Vtrip. See Table 2-22 on page 2-22 for a complete table of trip points.
A dv a n c e v 0. 3
2 - 61
IGLOOe DC and Switching Characteristics
Timing Characteristics
1.5 V DC Core Voltage Table 2-103 * SSTL 3 Class II - Applies to 1.5 V DC Core Voltage Commercial-Case Conditions: TJ = 70C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V VREF = 1.5 V Speed Grade Std. tDOUT 0.98 tDP 1.86 tDIN 0.19 tPY 1.09 tEOUT 0.67 tZL 1.89 tZH 1.58 tLZ tHZ tZLS 5.52 tZHS 5.21 Units ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values. 1.2 V DC Core Voltage Table 2-104 * SSTL 3 Class II - Applies to 1.2 V DC Core Voltage Commercial-Case Conditions: TJ = 70C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 3.0 V VREF = 1.5 V Speed Grade Std. tDOUT 1.55 tDP 2.12 tDIN 0.26 tPY 1.32 tEOUT 1.10 tZL 2.16 tZH 1.89 tLZ tHZ tZLS 7.97 tZHS 7.70 Units ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-6 for derating values.
2 -6 2
A d v a n c e v 0. 3
IGLOOe DC and Switching Characteristics
Differential I/O Characteristics
Physical Implementation
Configuration of the I/O modules as a differential pair is handled by the Actel Designer software when the user instantiates a differential I/O macro in the design. Differential I/Os can also be used in conjunction with the embedded Input Register (InReg), Output Register (OutReg), Enable Register (EnReg), and DDR. However, there is no support for bidirectional I/Os or tristates with the LVPECL standards.
LVDS
Low-Voltage Differential Signaling (ANSI/TIA/EIA-644) is a high-speed, differential I/O standard. It requires that one data bit be carried through two signal lines, so two pins are needed. It also requires external resistor termination. The full implementation of the LVDS transmitter and receiver is shown in an example in Figure 2-23. The building blocks of the LVDS transmitter-receiver are one transmitter macro, one receiver macro, three board resistors at the transmitter end, and one resistor at the receiver end. The values for the three driver resistors are different from those used in the LVPECL implementation because the output standard specifications are different. Along with LVDS I/O, IGLOOe also supports Bus LVDS structure and Multipoint LVDS (M-LVDS) configuration (up to 40 nodes).
Bourns Part Number: CAT16-LV4F12 OUTBUF_LVDS FPGA P 165 Z0 = 50 140 N 165 Z0 = 50 100 N P FPGA + - INBUF_LVDS
Figure 2-23 * LVDS Circuit Diagram and Board-Level Implementation
A dv a n c e v 0. 3
2 - 63
IGLOOe DC and Switching Characteristics Table 2-105 * Minimum and Maximum DC Input and Output Levels DC Parameter VCCI VOL VOH IOL 4 IOH 4 VI IIH 3 IIL 3 VODIFF VOCM VICM VIDIFF Notes: 1. 5% 2. Differential input voltage = 350 mV 3. Currents are measured at 85C junction temperature. 4. IOL /IOH is defined by VODIFF /(resistor network). Table 2-106 * AC Waveforms, Measuring Points, and Capacitive Loads Input LOW (V) 1.075 Input HIGH (V) 1.325 Measuring Point* (V) Cross point VREF (typ.) (V) - Supply Voltage Output LOW Voltage Output HIGH Voltage Output Lower Current Output HIGH Current Input Voltage Input HIGH Leakage Current Input LOW Leakage Current Differential Output Voltage Output Common-Mode Voltage Input Common-Mode Voltage Input Differential Voltage 250 1.125 0.05 100 350 1.25 1.25 350 Description Min. 2.375 0.9 1.25 0.65 0.65 0 Typ. 2.5 1.075 1.425 0.91 0.91 Max. 2.625 1.25 1.6 1.16 1.16 2.925 10 10 450 1.375 2.35 Units V V V mA mA V A A mV V V mV
* Measuring point = Vtrip. See Table 2-22 on page 2-22 for a complete table of trip points.
Timing Characteristics
1.5 V DC Core Voltage Table 2-107 * LVDS - Applies to 1.5 V DC Core Voltage Commercial-Case Conditions: TJ = 70C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V Speed Grade Std. tDOUT 0.98 tDP 1.77 tDIN 0.19 tPY 1.62 Units ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values. 1.2 V DC Core Voltage Table 2-108 * LVDS - Applies to 1.2 V DC Core Voltage Commercial-Case Conditions: TJ = 70C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 2.3 V Speed Grade Std. tDOUT 1.55 tDP 2.19 tDIN 0.26 tPY 1.88 Units ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-6 for derating values.
2 -6 4
A d v a n c e v 0. 3
IGLOOe DC and Switching Characteristics
B-LVDS/M-LVDS
Bus LVDS (B-LVDS) and Multipoint LVDS (M-LVDS) specifications extend the existing LVDS standard to high-performance multipoint bus applications. Multidrop and multipoint bus configurations may contain any combination of drivers, receivers, and transceivers. Actel LVDS drivers provide the higher drive current required by B-LVDS and M-LVDS to accommodate the loading. The drivers require series terminations for better signal quality and to control voltage swing. Termination is also required at both ends of the bus since the driver can be located anywhere on the bus. These configurations can be implemented using the TRIBUF_LVDS and BIBUF_LVDS macros along with appropriate terminations. Multipoint designs using Actel LVDS macros can achieve up to 200 MHz with a maximum of 20 loads. A sample application is given in Figure 2-24. The input and output buffer delays are available in the LVDS section in Table 2-107 on page 2-64 and Table 2-108 on page 2-64. Example: For a bus consisting of 20 equidistant loads, the following terminations provide the required differential voltage, in worst-case Industrial operating conditions, at the farthest receiver: RS = 60 and RT = 70 , given Z0 = 50 (2") and Zstub = 50 (~1.5").
Receiver
EN
Transceiver
EN
Driver
Receiver
EN EN
Transceiver
EN
D
+
R
+
-
T
+
-
-
R
+
-
T
+
BIBUF_LVDS
-
RS Zstub Z0 RT Z 0
RS Zstub Zstub Z0 Z0
RS
RS Zstub Zstub Z0 Z0
RS
RS Zstub Zstub Z0 Z0
RS
RS Zstub ... Z0 Z0
RS
RS Z0 Z0 RT
Figure 2-24 * B-LVDS/M-LVDS Multipoint Application Using LVDS I/O Buffers
LVPECL
Low-Voltage Positive Emitter-Coupled Logic (LVPECL) is another differential I/O standard. It requires that one data bit be carried through two signal lines. Like LVDS, two pins are needed. It also requires external resistor termination. The full implementation of the LVDS transmitter and receiver is shown in an example in Figure 2-25. The building blocks of the LVPECL transmitter-receiver are one transmitter macro, one receiver macro, three board resistors at the transmitter end, and one resistor at the receiver end. The values for the three driver resistors are different from those used in the LVDS implementation because the output standard specifications are different.
Bourns Part Number: CAT16-PC4F12 OUTBUF_LVPECL FPGA P 100 Z0 = 50 187 W N 100 Z0 = 50 100 N P FPGA
+ -
INBUF_LVPECL
Figure 2-25 * LVPECL Circuit Diagram and Board-Level Implementation
A dv a n c e v 0. 3
2 - 65
IGLOOe DC and Switching Characteristics Table 2-109 * Minimum and Maximum DC Input and Output Levels DC Parameter VCCI VOL VOH VIL, VIH VODIFF VOCM VICM VIDIFF Description Supply Voltage Output LOW Voltage Output HIGH Voltage Input LOW, Input HIGH Voltages Differential Output Voltage Output Common-Mode Voltage Input Common-Mode Voltage Input Differential Voltage 0.96 1.8 0 0.625 1.762 1.01 300 Min. Max. 3.0 1.27 2.11 3.3 0.97 1.98 2.57 1.06 1.92 0 0.625 1.762 1.01 300 Min. Max. 3.3 1.43 2.28 3.6 0.97 1.98 2.57 1.30 2.13 0 0.625 1.762 1.01 300 Min. Max. 3.6 1.57 2.41 3.9 0.97 1.98 2.57 Units V V V V V V V mV
Table 2-110 * AC Waveforms, Measuring Points, and Capacitive Loads Input LOW (V) 1.64 Input HIGH (V) 1.94 Measuring Point* (V) Cross point VREF (typ.) (V) -
* Measuring point = Vtrip. See Table 2-22 on page 2-22 for a complete table of trip points.
Timing Characteristics
1.5 V DC Core Voltage Table 2-111 * LVPECL - Applies to 1.5 V DC Core Voltage Commercial-Case Conditions: TJ = 70C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V Speed Grade Std. tDOUT 0.98 tDP 1.75 tDIN 0.19 tPY 1.45 Units ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values. 1.2 V DC Core Voltage Table 2-112 * LVPECL - Applies to 1.2 V DC Core Voltage Commercial-Case Conditions: TJ = 70C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 3.0 V Speed Grade Std. tDOUT 1.55 tDP 2.16 tDIN 0.26 tPY 1.70 Units ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-6 for derating values.
2 -6 6
A d v a n c e v 0. 3
IGLOOe DC and Switching Characteristics
I/O Register Specifications
Fully Registered I/O Buffers with Synchronous Enable and Asynchronous Preset
INBUF
Preset
L Pad Out D DOUT Data_out
TRIBUF
Data
PRE D Q C DFN1E1P1 E B
E
Y Core Array
F G
PRE D Q DFN1E1P1 E
INBUF INBUF
Enable
EOUT H I
CLKBUF
CLK
A J K Data Input I/O Register with: Active High Enable Active High Preset Positive-Edge Triggered PRE D Q DFN1E1P1 E
CLKBUF
INBUF
INBUF
Data Output Register and Enable Output Register with: Active High Enable Active High Preset Postive-Edge Triggered
CLK
Figure 2-26 * Timing Model of Registered I/O Buffers with Synchronous Enable and Asynchronous Preset
A dv a n c e v 0. 3
D_Enable
Enable
2 - 67
IGLOOe DC and Switching Characteristics Table 2-113 * Parameter Definition and Measuring Nodes Parameter Name tOCLKQ tOSUD tOHD tOSUE tOHE tOPRE2Q tOREMPRE tORECPRE tOECLKQ tOESUD tOEHD tOESUE tOEHE tOEPRE2Q tOEREMPRE tOERECPRE tICLKQ tISUD tIHD tISUE tIHE tIPRE2Q tIREMPRE tIRECPRE Parameter Definition Clock-to-Q of the Output Data Register Data Setup Time for the Output Data Register Data Hold Time for the Output Data Register Enable Setup Time for the Output Data Register Enable Hold Time for the Output Data Register Asynchronous Preset-to-Q of the Output Data Register Asynchronous Preset Removal Time for the Output Data Register Asynchronous Preset Recovery Time for the Output Data Register Clock-to-Q of the Output Enable Register Data Setup Time for the Output Enable Register Data Hold Time for the Output Enable Register Enable Setup Time for the Output Enable Register Enable Hold Time for the Output Enable Register Asynchronous Preset-to-Q of the Output Enable Register Asynchronous Preset Removal Time for the Output Enable Register Asynchronous Preset Recovery Time for the Output Enable Register Clock-to-Q of the Input Data Register Data Setup Time for the Input Data Register Data Hold Time for the Input Data Register Enable Setup Time for the Input Data Register Enable Hold Time for the Input Data Register Asynchronous Preset-to-Q of the Input Data Register Asynchronous Preset Removal Time for the Input Data Register Asynchronous Preset Recovery Time for the Input Data Register Measuring Nodes (from, to)* H, DOUT F, H F, H G, H G, H L, DOUT L, H L, H H, EOUT J, H J, H K, H K, H I, EOUT I, H I, H A, E C, A C, A B, A B, A D, E D, A D, A
* See Figure 2-26 on page 2-67 for more information.
2 -6 8
A d v a n c e v 0. 3
IGLOOe DC and Switching Characteristics
Fully Registered I/O Buffers with Synchronous Enable and Asynchronous Clear
Pad Out
DOUT Y D CC Q EE DFN1E1C1 E BB CLR LL
CLKBUF
Data
Core Array
Data_out FF
TRIBUF
INBUF INBUF
D
Q
DFN1E1C1 GG E CLR
EOUT
Enable
CLK
HH AA JJ DD KK Data Input I/O Register with Active High Enable Active High Clear Positive-Edge Triggered
INBUF
CLR
D
Q
DFN1E1C1 E CLR
INBUF
INBUF
CLKBUF
Data Output Register and Enable Output Register with Active High Enable Active High Clear Positive-Edge Triggered
Enable
Figure 2-27 * Timing Model of the Registered I/O Buffers with Synchronous Enable and Asynchronous Clear
A dv a n c e v 0. 3
D_Enable
CLK
2 - 69
IGLOOe DC and Switching Characteristics Table 2-114 * Parameter Definition and Measuring Nodes Parameter Name tOCLKQ tOSUD tOHD tOSUE tOHE tOCLR2Q tOREMCLR tORECCLR tOECLKQ tOESUD tOEHD tOESUE tOEHE tOECLR2Q tOEREMCLR tOERECCLR tICLKQ tISUD tIHD tISUE tIHE tICLR2Q tIREMCLR tIRECCLR Parameter Definition Clock-to-Q of the Output Data Register Data Setup Time for the Output Data Register Data Hold Time for the Output Data Register Enable Setup Time for the Output Data Register Enable Hold Time for the Output Data Register Asynchronous Clear-to-Q of the Output Data Register Asynchronous Clear Removal Time for the Output Data Register Asynchronous Clear Recovery Time for the Output Data Register Clock-to-Q of the Output Enable Register Data Setup Time for the Output Enable Register Data Hold Time for the Output Enable Register Enable Setup Time for the Output Enable Register Enable Hold Time for the Output Enable Register Asynchronous Clear-to-Q of the Output Enable Register Asynchronous Clear Removal Time for the Output Enable Register Asynchronous Clear Recovery Time for the Output Enable Register Clock-to-Q of the Input Data Register Data Setup Time for the Input Data Register Data Hold Time for the Input Data Register Enable Setup Time for the Input Data Register Enable Hold Time for the Input Data Register Asynchronous Clear-to-Q of the Input Data Register Asynchronous Clear Removal Time for the Input Data Register Asynchronous Clear Recovery Time for the Input Data Register Measuring Nodes (from, to)* HH, DOUT FF, HH FF, HH GG, HH GG, HH LL, DOUT LL, HH LL, HH HH, EOUT JJ, HH JJ, HH KK, HH KK, HH II, EOUT II, HH II, HH AA, EE CC, AA CC, AA BB, AA BB, AA DD, EE DD, AA DD, AA
* See Figure 2-27 on page 2-69 for more information.
2 -7 0
A d v a n c e v 0. 3
IGLOOe DC and Switching Characteristics
Input Register
tICKMPWH tICKMPWL 50% 50% tISUD Data 1 50% 0 tIHD 50% 50% 50% 50% 50% 50%
CLK
Enable
50% tIHE 50%
tIWPRE tISUE
tIRECPRE 50% tIWCLR tIRECCLR 50%
tIREMPRE 50% tIREMCLR 50%
Preset
Clear tIPRE2Q Out_1 50% tICLKQ 50%
50%
tICLR2Q
50%
Figure 2-28 * Input Register Timing Diagram
Timing Characteristics
1.5 V DC Core Voltage Table 2-115 * Input Data Register Propagation Delays Commercial-Case Conditions: TJ = 70C, Worst-Case VCC = 1.425 V Parameter tICLKQ tISUD tIHD tISUE tIHE tICLR2Q tIPRE2Q tIREMCLR tIRECCLR tIREMPRE tIRECPRE tIWCLR tIWPRE tICKMPWH tICKMPWL Description Clock-to-Q of the Input Data Register Data Setup Time for the Input Data Register Data Hold Time for the Input Data Register Enable Setup Time for the Input Data Register Enable Hold Time for the Input Data Register Asynchronous Clear-to-Q of the Input Data Register Asynchronous Preset-to-Q of the Input Data Register Asynchronous Clear Removal Time for the Input Data Register Asynchronous Clear Recovery Time for the Input Data Register Asynchronous Preset Removal Time for the Input Data Register Asynchronous Preset Recovery Time for the Input Data Register Asynchronous Clear Minimum Pulse Width for the Input Data Register Asynchronous Preset Minimum Pulse Width for the Input Data Register Clock Minimum Pulse Width HIGH for the Input Data Register Clock Minimum Pulse Width LOW for the Input Data Register Std. 0.42 0.47 0.00 0.67 0.00 0.79 0.79 0.00 0.24 0.00 0.24 0.19 0.19 0.31 0.28 Units ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.
A dv a n c e v 0. 3
2 - 71
IGLOOe DC and Switching Characteristics 1.2 V DC Core Voltage Table 2-116 * Input Data Register Propagation Delays Commercial-Case Conditions: TJ = 70C, Worst-Case VCC = 1.14 V Parameter tICLKQ tISUD tIHD tISUE tIHE tICLR2Q tIPRE2Q tIREMCLR tIRECCLR tIREMPRE tIRECPRE tIWCLR tIWPRE tICKMPWH tICKMPWL Description Clock-to-Q of the Input Data Register Data Setup Time for the Input Data Register Data Hold Time for the Input Data Register Enable Setup Time for the Input Data Register Enable Hold Time for the Input Data Register Asynchronous Clear-to-Q of the Input Data Register Asynchronous Preset-to-Q of the Input Data Register Asynchronous Clear Removal Time for the Input Data Register Asynchronous Clear Recovery Time for the Input Data Register Asynchronous Preset Removal Time for the Input Data Register Asynchronous Preset Recovery Time for the Input Data Register Asynchronous Clear Minimum Pulse Width for the Input Data Register Asynchronous Preset Minimum Pulse Width for the Input Data Register Clock Minimum Pulse Width HIGH for the Input Data Register Clock Minimum Pulse Width LOW for the Input Data Register Std. 0.68 0.97 0.00 1.02 0.00 1.19 1.19 0.00 0.24 0.00 0.24 0.19 0.19 0.31 0.28 Units ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-6 for derating values.
2 -7 2
A d v a n c e v 0. 3
IGLOOe DC and Switching Characteristics
Output Register
tOCKMPWH tOCKMPWL 50% 50% tOSUD tOHD Data_out 1 50% 0 50% 50% 50% 50% 50% 50%
CLK
Enable
50% tOHE 50%
tOWPRE
tORECPRE 50% tORECCLR
tOREMPRE 50% tOREMCLR 50%
Preset
tOSUE
tOWCLR Clear tOPRE2Q DOUT 50% tOCLKQ 50% tOCLR2Q 50% 50%
50%
Figure 2-29 * Output Register Timing Diagram
Timing Characteristics
1.5 V DC Core Voltage Table 2-117 * Output Data Register Propagation Delays Commercial-Case Conditions: TJ = 70C, Worst-Case VCC = 1.425 V Parameter tOCLKQ tOSUD tOHD tOSUE tOHE tOCLR2Q tOPRE2Q tOREMCLR tORECCLR tOREMPRE tORECPRE tOWCLR tOWPRE tOCKMPWH tOCKMPWL Description Clock-to-Q of the Output Data Register Data Setup Time for the Output Data Register Data Hold Time for the Output Data Register Enable Setup Time for the Output Data Register Enable Hold Time for the Output Data Register Asynchronous Clear-to-Q of the Output Data Register Asynchronous Preset-to-Q of the Output Data Register Asynchronous Clear Removal Time for the Output Data Register Asynchronous Clear Recovery Time for the Output Data Register Asynchronous Preset Removal Time for the Output Data Register Asynchronous Preset Recovery Time for the Output Data Register Asynchronous Clear Minimum Pulse Width for the Output Data Register Asynchronous Preset Minimum Pulse Width for the Output Data Register Clock Minimum Pulse Width HIGH for the Output Data Register Clock Minimum Pulse Width LOW for the Output Data Register Std. 1.00 0.51 0.00 0.70 0.00 1.34 1.34 0.00 0.24 0.00 0.24 0.19 0.19 0.31 0.28 Units ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.
A dv a n c e v 0. 3
2 - 73
IGLOOe DC and Switching Characteristics 1.2 V DC Core Voltage Table 2-118 * Output Data Register Propagation Delays Commercial-Case Conditions: TJ = 70C, Worst-Case VCC = 1.14 V Parameter tOCLKQ tOSUD tOHD tOSUE tOHE tOCLR2Q tOPRE2Q tOREMCLR tORECCLR tOREMPRE tORECPRE tOWCLR tOWPRE tOCKMPWH tOCKMPWL Description Clock-to-Q of the Output Data Register Data Setup Time for the Output Data Register Data Hold Time for the Output Data Register Enable Setup Time for the Output Data Register Enable Hold Time for the Output Data Register Asynchronous Clear-to-Q of the Output Data Register Asynchronous Preset-to-Q of the Output Data Register Asynchronous Clear Removal Time for the Output Data Register Asynchronous Clear Recovery Time for the Output Data Register Asynchronous Preset Removal Time for the Output Data Register Asynchronous Preset Recovery Time for the Output Data Register Asynchronous Clear Minimum Pulse Width for the Output Data Register Asynchronous Preset Minimum Pulse Width for the Output Data Register Clock Minimum Pulse Width HIGH for the Output Data Register Clock Minimum Pulse Width LOW for the Output Data Register Std. 1.52 1.15 0.00 1.11 0.00 1.96 1.96 0.00 0.24 0.00 0.24 0.19 0.19 0.31 0.28 Units ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-6 for derating values.
2 -7 4
A d v a n c e v 0. 3
IGLOOe DC and Switching Characteristics
Output Enable Register
tOECKMPWH tOECKMPWL
50% CLK
50% tOESUD tOEHD
50%
50%
50%
50%
50%
D_Enable
1
50%
0 50%
Enable
50%
tOEWPRE 50%
tOERECPRE 50%
tOEREMPRE 50%
Preset
tOESUEtOEHE
tOEWCLR 50% Clear tOEPRE2Q EOUT 50% tOECLKQ 50% tOECLR2Q 50%
tOERECCLR 50%
tOEREMCLR 50%
Figure 2-30 * Output Enable Register Timing Diagram
Timing Characteristics
1.5 V DC Core Voltage Table 2-119 * Output Enable Register Propagation Delays Commercial-Case Conditions: TJ = 70C, Worst-Case VCC = 1.425 V Parameter tOECLKQ tOESUD tOEHD tOESUE tOEHE tOECLR2Q tOEPRE2Q tOEREMCLR tOERECCLR tOEREMPRE tOERECPRE tOEWCLR tOEWPRE tOECKMPWH tOECKMPWL Description Clock-to-Q of the Output Enable Register Data Setup Time for the Output Enable Register Data Hold Time for the Output Enable Register Enable Setup Time for the Output Enable Register Enable Hold Time for the Output Enable Register Asynchronous Clear-to-Q of the Output Enable Register Asynchronous Preset-to-Q of the Output Enable Register Asynchronous Clear Removal Time for the Output Enable Register Asynchronous Clear Recovery Time for the Output Enable Register Asynchronous Preset Removal Time for the Output Enable Register Asynchronous Preset Recovery Time for the Output Enable Register Asynchronous Clear Minimum Pulse Width for the Output Enable Register Asynchronous Preset Minimum Pulse Width for the Output Enable Register Clock Minimum Pulse Width HIGH for the Output Enable Register Clock Minimum Pulse Width LOW for the Output Enable Register Std. 0.75 0.51 0.00 0.73 0.00 1.13 1.13 0.00 0.24 0.00 0.24 0.19 0.19 0.31 0.28 Units ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.
A dv a n c e v 0. 3
2 - 75
IGLOOe DC and Switching Characteristics 1.2 V DC Core Voltage Table 2-120 * Output Enable Register Propagation Delays Commercial-Case Conditions: TJ = 70C, Worst-Case VCC = 1.14 V Parameter tOECLKQ tOESUD tOEHD tOESUE tOEHE tOECLR2Q tOEPRE2Q tOEREMCLR tOERECCLR tOEREMPRE tOERECPRE tOEWCLR tOEWPRE tOECKMPWH tOECKMPWL Description Clock-to-Q of the Output Enable Register Data Setup Time for the Output Enable Register Data Hold Time for the Output Enable Register Enable Setup Time for the Output Enable Register Enable Hold Time for the Output Enable Register Asynchronous Clear-to-Q of the Output Enable Register Asynchronous Preset-to-Q of the Output Enable Register Asynchronous Clear Removal Time for the Output Enable Register Asynchronous Clear Recovery Time for the Output Enable Register Asynchronous Preset Removal Time for the Output Enable Register Asynchronous Preset Recovery Time for the Output Enable Register Asynchronous Clear Minimum Pulse Width for the Output Enable Register Asynchronous Preset Minimum Pulse Width for the Output Enable Register Clock Minimum Pulse Width HIGH for the Output Enable Register Clock Minimum Pulse Width LOW for the Output Enable Register Std. 1.10 1.15 0.00 1.22 0.00 1.65 1.65 0.00 0.24 0.00 0.24 0.19 0.19 0.31 0.28 Units ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-6 for derating values.
2 -7 6
A d v a n c e v 0. 3
IGLOOe DC and Switching Characteristics
DDR Module Specifications
Input DDR Module
Input DDR
INBUF Data
A FF1
D
Out_QF (to core)
CLK CLKBUF
B FF2
E
Out_QR (to core)
CLR INBUF
C
DDR_IN
Figure 2-31 * Input DDR Timing Model Table 2-121 * Parameter Definitions Parameter Name tDDRICLKQ1 tDDRICLKQ2 tDDRISUD tDDRIHD tDDRICLR2Q1 tDDRICLR2Q2 tDDRIREMCLR tDDRIRECCLR Parameter Definition Clock-to-Out Out_QR Clock-to-Out Out_QF Data Setup Time of DDR input Data Hold Time of DDR input Clear-to-Out Out_QR Clear-to-Out Out_QF Clear Removal Clear Recovery Measuring Nodes (from, to) B, D B, E A, B A, B C, D C, E C, B C, B
A dv a n c e v 0. 3
2 - 77
IGLOOe DC and Switching Characteristics
CLK tDDRISUD Data 1 2 3 4 5 6 7 tDDRIHD 8 tDDRIRECCLR CLR tDDRIREMCLR tDDRICLKQ1 tDDRICLR2Q1 Out_QF tDDRICLR2Q2 Out_QR 3 2 4 tDDRICLKQ2 5 7 6 9
Figure 2-32 * Input DDR Timing Diagram
Timing Characteristics
1.5 V DC Core Voltage Table 2-122 * Input DDR Propagation Delays Commercial-Case Conditions: TJ = 70C, Worst-Case VCC = 1.425 V Parameter tDDRICLKQ1 tDDRICLKQ2 tDDRISUD1 tDDRISUD2 tDDRIHD1 tDDRIHD2 tDDRICLR2Q1 tDDRICLR2Q2 tDDRIREMCLR tDDRIRECCLR tDDRIWCLR tDDRICKMPWH tDDRICKMPWL FDDRIMAX Description Clock-to-Out Out_QR for Input DDR Clock-to-Out Out_QF for Input DDR Data Setup for Input DDR (negedge) Data Setup for Input DDR (posedge) Data Hold for Input DDR (negedge) Data Hold for Input DDR (posedge) Asynchronous Clear to Out Out_QR for Input DDR Asynchronous Clear-to-Out Out_QF for Input DDR Asynchronous Clear Removal Time for Input DDR Asynchronous Clear Recovery Time for Input DDR Asynchronous Clear Minimum Pulse Width for Input DDR Clock Minimum Pulse Width HIGH for Input DDR Clock Minimum Pulse Width LOW for Input DDR Maximum Frequency for Input DDR Std. 0.48 0.65 0.50 0.40 0.00 0.00 0.82 0.98 0.00 0.23 0.19 0.31 0.28 Units ns ns ns ns ns ns ns ns ns ns ns ns ns MHz
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.
2 -7 8
A d v a n c e v 0. 3
IGLOOe DC and Switching Characteristics 1.2 V DC Core Voltage Table 2-123 * Input DDR Propagation Delays Commercial-Case Conditions: TJ = 70C, Worst-Case VCC = 1.14 V Parameter tDDRICLKQ1 tDDRICLKQ2 tDDRISUD1 tDDRISUD2 tDDRIHD1 tDDRIHD2 tDDRICLR2Q1 tDDRICLR2Q2 tDDRIREMCLR tDDRIRECCLR tDDRIWCLR tDDRICKMPWH tDDRICKMPWL FDDRIMAX Description Clock-to-Out Out_QR for Input DDR Clock-to-Out Out_QF for Input DDR Data Setup for Input DDR (negedge) Data Setup for Input DDR (posedge) Data Hold for Input DDR (negedge) Data Hold for Input DDR (posedge) Asynchronous Clear to Out Out_QR for Input DDR Asynchronous Clear-to-Out Out_QF for Input DDR Asynchronous Clear Removal Time for Input DDR Asynchronous Clear Recovery Time for Input DDR Asynchronous Clear Minimum Pulse Width for Input DDR Clock Minimum Pulse Width HIGH for Input DDR Clock Minimum Pulse Width LOW for Input DDR Maximum Frequency for Input DDR Std. 0.76 0.94 0.93 0.84 0.00 0.00 1.23 1.42 0.00 0.24 0.19 0.31 0.28 Units ns ns ns ns ns ns ns ns ns ns ns ns ns MHz
Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-6 for derating values.
A dv a n c e v 0. 3
2 - 79
IGLOOe DC and Switching Characteristics
Output DDR Module
Output DDR
Data_F (from core)
A X FF1 B Out X 0 E X X FF2 1 X OUTBUF
CLK CLKBUF C D
Data_R (from core)
CLR INBUF
B C
X X DDR_OUT
Figure 2-33 * Output DDR Timing Model Table 2-124 * Parameter Definitions Parameter Name tDDROCLKQ tDDROCLR2Q tDDROREMCLR tDDRORECCLR tDDROSUD1 tDDROSUD2 tDDROHD1 tDDROHD2 Clock-to-Out Asynchronous Clear-to-Out Clear Removal Clear Recovery Data Setup Data_F Data Setup Data_R Data Hold Data_F Data Hold Data_R Parameter Definition Measuring Nodes (from, to) B, E C, E C, B C, B A, B D, B A, B D, B
2 -8 0
A d v a n c e v 0. 3
IGLOOe DC and Switching Characteristics
CLK tDDROSUD2 tDDROHD2 Data_F 1 2 tDDROREMCLR Data_R 6 7 tDDROHD1 8 9 10 tDDRORECCLR CLR tDDROREMCLR tDDROCLR2Q Out tDDROCLKQ 7 2 8 3 9 4 10 11 3 4 5
Figure 2-34 * Output DDR Timing Diagram
A dv a n c e v 0. 3
2 - 81
IGLOOe DC and Switching Characteristics
Timing Characteristics
1.5 V DC Core Voltage Table 2-125 * Output DDR Propagation Delays Commercial-Case Conditions: TJ = 70C, Worst-Case VCC = 1.425 V Parameter tDDROCLKQ tDDROSUD1 tDDROSUD2 tDDROHD1 tDDROHD2 tDDROCLR2Q tDDROREMCLR tDDRORECCLR tDDROWCLR1 tDDROCKMPWH tDDROCKMPWL FDDOMAX Description Clock-to-Out of DDR for Output DDR Data_F Data Setup for Output DDR Data_R Data Setup for Output DDR Data_F Data Hold for Output DDR Data_R Data Hold for Output DDR Asynchronous Clear-to-Out for Output DDR Asynchronous Clear Removal Time for Output DDR Asynchronous Clear Recovery Time for Output DDR Asynchronous Clear Minimum Pulse Width for Output DDR Clock Minimum Pulse Width HIGH for the Output DDR Clock Minimum Pulse Width LOW for the Output DDR Maximum Frequency for the Output DDR Std. 1.07 0.67 0.67 0.00 0.00 1.38 0.00 0.23 0.19 0.31 0.28 Units ns ns ns ns ns ns ns ns ns ns ns MHz
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.
1.2 V DC Core Voltage
Table 2-126 * Output DDR Propagation Delays Commercial-Case Conditions: TJ = 70C, Worst-Case VCC = 1.14 V Parameter tDDROCLKQ tDDROSUD1 tDDROSUD2 tDDROHD1 tDDROHD2 tDDROCLR2Q tDDROREMCLR tDDRORECCLR tDDROWCLR1 tDDROCKMPWH tDDROCKMPWL FDDOMAX Description Clock-to-Out of DDR for Output DDR Data_F Data Setup for Output DDR Data_R Data Setup for Output DDR Data_F Data Hold for Output DDR Data_R Data Hold for Output DDR Asynchronous Clear-to-Out for Output DDR Asynchronous Clear Removal Time for Output DDR Asynchronous Clear Recovery Time for Output DDR Asynchronous Clear Minimum Pulse Width for Output DDR Clock Minimum Pulse Width HIGH for the Output DDR Clock Minimum Pulse Width LOW for the Output DDR Maximum Frequency for the Output DDR Std. 1.60 1.09 1.16 0.00 0.00 1.99 0.00 0.24 0.19 0.31 0.28 Units ns ns ns ns ns ns ns ns ns ns ns MHz
Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-6 for derating values.
2 -8 2
A d v a n c e v 0. 3
IGLOOe DC and Switching Characteristics
VersaTile Characteristics
VersaTile Specifications as a Combinatorial Module
The IGLOOe library offers all combinations of LUT-3 combinatorial functions. In this section, timing characteristics are presented for a sample of the library. For more details, refer to the IGLOO, Fusion, and ProASIC3 Macro Library Guide.
A
INV
Y
A OR2 B A AND2 B Y Y
A NOR2 B Y
A NAND2 B A B C Y
A B XOR2 Y
XOR3
Y
A A B C B C
MAJ3 Y
A 0 MUX2 B 1 Y
NAND3
S
Figure 2-35 * Sample of Combinatorial Cells
A dv a n c e v 0. 3
2 - 83
IGLOOe DC and Switching Characteristics
tPD Fanout = 4 Net Length = 1 VersaTile B A NAND2 or Any Combinatorial Logic Y
Net Length = 1 VersaTile
A NAND2 or Any Combinatorial Logic Y
tPD = MAX(tPD(RR), tPD(RF), tPD(FF), tPD(FR)) where edges are applicable for a particular combinatorial cell
B Net Length = 1 VersaTile B A A
NAND2 or Any Combinatorial Logic
Y
Net Length = 1 VersaTile
B
VCC
NAND2 or Any Combinatorial Logic
Y
50% A, B, C
50% GND VCC
50% OUT GND VCC OUT 50% tPD (RF) GND tPD (RR) tPD (FF) tPD (FR)
50%
50%
Figure 2-36 * Timing Model and Waveforms
2 -8 4
A d v a n c e v 0. 3
IGLOOe DC and Switching Characteristics
Timing Characteristics
1.5 V DC Core Voltage
Table 2-127 * Combinatorial Cell Propagation Delays Commercial-Case Conditions: TJ = 70C, Worst-Case VCC = 1.425 V Combinatorial Cell INV AND2 NAND2 OR2 NOR2 XOR2 MAJ3 XOR3 MUX2 AND3 Equation Y = !A Y=A*B Y = !(A * B) Y=A+B Y = !(A + B) Y=AB Y = MAJ(A , B, C) Y=ABC Y = A !S + B S Y=A*B*C Parameter tPD tPD tPD tPD tPD tPD tPD tPD tPD tPD Std. 0.80 0.84 0.90 1.19 1.10 1.37 1.33 1.79 1.48 1.21 Units ns ns ns ns ns ns ns ns ns ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.
1.2 V DC Core Voltage
Table 2-128 * Combinatorial Cell Propagation Delays Commercial-Case Conditions: TJ = 70C, Worst-Case VCC = 1.425 V Combinatorial Cell INV AND2 NAND2 OR2 NOR2 XOR2 MAJ3 XOR3 MUX2 AND3 Equation Y = !A Y=A*B Y = !(A * B) Y=A+B Y = !(A + B) Y=AB Y = MAJ(A , B, C) Y=ABC Y = A !S + B S Y=A*B*C Parameter tPD tPD tPD tPD tPD tPD tPD tPD tPD tPD Std. 1.35 1.42 1.58 2.10 1.94 2.33 2.34 3.05 2.64 2.10 Units ns ns ns ns ns ns ns ns ns ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-6 for derating values.
A dv a n c e v 0. 3
2 - 85
IGLOOe DC and Switching Characteristics
VersaTile Specifications as a Sequential Module
The IGLOOe library offers a wide variety of sequential cells, including flip-flops and latches. Each has a data input and optional enable, clear, or preset. In this section, timing characteristics are presented for a representative sample from the library. For more details, refer to the IGLOO, Fusion, and ProASIC3 Macro Library Guide.
Data
D DFN1
Q
Out
Data D En CLK Q DFN1E1
Out
CLK
PRE
Data
D
Q DFN1C1
Out
Data En CLK
D
Q
Out
DFI1E1P1
CLK CLR
Figure 2-37 * Sample of Sequential Cells
2 -8 6
A d v a n c e v 0. 3
IGLOOe DC and Switching Characteristics
tCKMPWH tCKMPWL 50% 50% tSUD Data 50% tHD 0 50% 50% 50% 50% 50% 50%
CLK
EN 50% tHE tWPRE tSUE 50% tRECPRE 50% tRECCLR 50% tREMPRE 50% tREMCLR 50%
PRE
tWCLR CLR tPRE2Q Out tCLKQ 50% 50% 50%
tCLR2Q 50%
Figure 2-38 * Timing Model and Waveforms
Timing Characteristics
1.5 V DC Core Voltage
Table 2-129 * Register Delays Commercial-Case Conditions: TJ = 70C, Worst-Case VCC = 1.425 V Parameter tCLKQ tSUD tHD tSUE tHE tCLR2Q tPRE2Q tREMCLR tRECCLR tREMPRE tRECPRE tWCLR tWPRE tCKMPWH tCKMPWL Clock-to-Q of the Core Register Data Setup Time for the Core Register Data Hold Time for the Core Register Enable Setup Time for the Core Register Enable Hold Time for the Core Register Asynchronous Clear-to-Q of the Core Register Asynchronous Preset-to-Q of the Core Register Asynchronous Clear Removal Time for the Core Register Asynchronous Clear Recovery Time for the Core Register Asynchronous Preset Removal Time for the Core Register Asynchronous Preset Recovery Time for the Core Register Asynchronous Clear Minimum Pulse Width for the Core Register Asynchronous Preset Minimum Pulse Width for the Core Register Clock Minimum Pulse Width HIGH for the Core Register Clock Minimum Pulse Width LOW for the Core Register Description Std. 0.89 0.81 0.00 0.73 0.00 0.60 0.62 0.00 0.24 0.00 0.23 0.30 0.30 0.56 0.56 Units ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.
A dv a n c e v 0. 3
2 - 87
IGLOOe DC and Switching Characteristics
1.2 V DC Core Voltage
Table 2-130 * Register Delays Commercial-Case Conditions: TJ = 70C, Worst-Case VCC = 1.14 V Parameter tCLKQ tSUD tHD tSUE tHE tCLR2Q tPRE2Q tREMCLR tRECCLR tREMPRE tRECPRE tWCLR tWPRE tCKMPWH tCKMPWL Clock-to-Q of the Core Register Data Setup Time for the Core Register Data Hold Time for the Core Register Enable Setup Time for the Core Register Enable Hold Time for the Core Register Asynchronous Clear-to-Q of the Core Register Asynchronous Preset-to-Q of the Core Register Asynchronous Clear Removal Time for the Core Register Asynchronous Clear Recovery Time for the Core Register Asynchronous Preset Removal Time for the Core Register Asynchronous Preset Recovery Time for the Core Register Asynchronous Clear Minimum Pulse Width for the Core Register Asynchronous Preset Minimum Pulse Width for the Core Register Clock Minimum Pulse Width HIGH for the Core Register Clock Minimum Pulse Width LOW for the Core Register Description Std. 1.61 1.17 0.00 1.29 0.00 0.87 0.89 0.00 0.24 0.00 0.24 0.46 0.46 0.95 0.95 Units ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-6 for derating values.
2 -8 8
A d v a n c e v 0. 3
IGLOOe DC and Switching Characteristics
Global Resource Characteristics
AGLE600 Clock Tree Topology
Clock delays are device-specific. Figure 2-39 is an example of a global tree used for clock routing. The global tree presented in Figure 2-39 is driven by a CCC located on the west side of the AGLE600 device. It is used to drive all D-flip-flops in the device.
Central Global Rib
CCC
VersaTile Rows
Global Spine
Figure 2-39 * Example of Global Tree Use in an AGLE600 Device for Clock Routing
A dv a n c e v 0. 3
2 - 89
IGLOOe DC and Switching Characteristics
Global Tree Timing Characteristics
Global clock delays include the central rib delay, the spine delay, and the row delay. Delays do not include I/O input buffer clock delays, as these are I/O standard-dependent, and the clock may be driven and conditioned internally by the CCC module. For more details on clock conditioning capabilities, refer to the "Clock Conditioning Circuits" section on page 2-92. Table 2-131 and Table 2-133 present minimum and maximum global clock delays within the device. Minimum and maximum delays are measured with minimum and maximum loading.
Timing Characteristics
1.5 V DC Core Voltage Table 2-131 * AGLE600 Global Resource Commercial-Case Conditions: TJ = 70C, VCC = 1.425 V Std. Parameter tRCKL tRCKH tRCKMPWH tRCKMPWL tRCKSW FRMAX Notes: 1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net). 2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row). 3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values. Table 2-132 * AGLE3000 Global Resource Commercial-Case Conditions: TJ = 70C, VCC = 1.425 V Std. Parameter tRCKL tRCKH tRCKMPWH tRCKMPWL tRCKSW FRMAX Notes: 1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net). 2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row). 3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values. Description Input LOW Delay for Global Clock Input HIGH Delay for Global Clock Minimum Pulse Width HIGH for Global Clock Minimum Pulse Width LOW for Global Clock Maximum Skew for Global Clock Maximum Frequency for Global Clock 0.42 Min.
1
Description Input LOW Delay for Global Clock Input HIGH Delay for Global Clock Minimum Pulse Width HIGH for Global Clock Minimum Pulse Width LOW for Global Clock Maximum Skew for Global Clock Maximum Frequency for Global Clock
Min.1 1.48 1.52
Max.2 1.82 1.94
Units ns ns ns ns
0.42
ns MHz
Max.2 2.34 2.51
Units ns ns ns ns ns MHz
2.00 2.09
2 -9 0
A d v a n c e v 0. 3
IGLOOe DC and Switching Characteristics
1.2 V DC Core Voltage
Table 2-133 * AGLE600 Global Resource Commercial-Case Conditions: TJ = 70C, VCC = 1.14 V Std. Parameter tRCKL tRCKH tRCKMPWH tRCKMPWL tRCKSW FRMAX Notes: 1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net). 2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row). 3. For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-6 for derating values. Table 2-134 * AGLE3000 Global Resource Commercial-Case Conditions: TJ = 70C, VCC = 1.14 V Std. Parameter tRCKL tRCKH tRCKMPWH tRCKMPWL tRCKSW FRMAX Notes: 1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net). 2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row). 3. For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-6 for derating values. Description Input LOW Delay for Global Clock Input HIGH Delay for Global Clock Minimum Pulse Width HIGH for Global Clock Minimum Pulse Width LOW for Global Clock Maximum Skew for Global Clock Maximum Frequency for Global Clock 0.61 Min.
1
Description Input LOW Delay for Global Clock Input HIGH Delay for Global Clock Minimum Pulse Width HIGH for Global Clock Minimum Pulse Width LOW for Global Clock Maximum Skew for Global Clock Maximum Frequency for Global Clock
Min.1 2.22 2.32
Max.2 2.67 2.93
Units ns ns ns ns
0.61
ns MHz
Max.2 3.27 3.61
Units ns ns ns ns ns MHz
2.83 3.00
A dv a n c e v 0. 3
2 - 91
IGLOOe DC and Switching Characteristics
Clock Conditioning Circuits
CCC Electrical Specifications
Timing Characteristics
Table 2-135 * IGLOOe CCC/PLL Specification For IGLOOe V2 or V5 Devices, 1.5 V DC Core Supply Voltage Parameter Clock Conditioning Circuitry Input Frequency fIN_CCC Clock Conditioning Circuitry Output Frequency fOUT_CCC Serial Clock (SCLK) for Dynamic PLL3 Delay Increments in Programmable Delay Blocks1, 2 360 32 1 Max Peak-to-Peak Period Jitter 1 Global Network Used 0.75 MHz to 24 MHz 24 MHz to 100 MHz 100 MHz to 250 MHz Acquisition Time LockControl = 0 LockControl = 1 Tracking Jitter LockControl = 0 LockControl = 1 Output Duty Cycle Delay Range in Block: Programmable Delay 1 Delay Range in Block: Programmable Delay 2 Delay Range in Block: Fixed Delay Notes: 1. This delay is a function of voltage and temperature. See Table 2-6 on page 2-6 and Table 2-7 on page 2-6 for deratings. 2. TJ = 25C, VCC = 1.5 V 3. Maximum value obtained for a Std. speed grade device in Worst Case Commercial Conditions.For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values. 4. For definitions of Type 1 and Type 2, refer to the PLL Block Diagram in the Clock Conditioning Circuits in IGLOO and ProASIC3 Devices chapter of the handbook. 5. Tracking jitter is defined as the variation in clock edge position of PLL outputs with reference to the PLL input clock edge. Tracking jitter does not measure the variation in PLL output period, which is covered by the period jitter parameter.
1, 2 1, 2, 4 1, 2, 4
Min. 1.5 0.75
Typ.
Max. 250 250 100
Units MHz MHz ps
Number of Programmable Values in Each Programmable Delay Block Input Cycle-to-Cycle Jitter (peak magnitude) CCC Output Peak-to-Peak Period Jitter FCCC_OUT
ns
External FB Used 0.75% 1.50% 3.75%
3 Global Networks Used 0.70% 1.20% 2.75%
0.50% 1.00% 2.50%
300 6.0
s ms
2.5 1.5 48.5 1.25 0.025 3.5 51.5 15.65 15.65
ns ns % ns ns ns
2 -9 2
A d v a n c e v 0. 3
IGLOOe DC and Switching Characteristics Table 2-136 * IGLOOe CCC/PLL Specification For IGLOOe V2 Devices, 1.2 V DC Core Supply Voltage Parameter Clock Conditioning Circuitry Input Frequency fIN_CCC Clock Conditioning Circuitry Output Frequency fOUT_CCC Serial Clock (SCLK) for Dynamic PLL4 Delay Increments in Programmable Delay Blocks1, 2 580 32 0.25 Max Peak-to-Peak Period Jitter 1 Global Network Used 0.75 MHz to 24 MHz 24 MHz to 100 MHz 100 MHz to 160 MHz Acquisition Time LockControl = 0 LockControl = 1 Tracking Jitter LockControl = 0 LockControl = 1 Output Duty Cycle Delay Range in Block: Programmable Delay 1 Delay Range in Block: Programmable Delay 2 Delay Range in Block: Fixed Delay Notes: 1. This delay is a function of voltage and temperature. See Table 2-6 on page 2-6 and Table 2-7 on page 2-6 for deratings. 2. TJ = 25C, VCC = 1.5 V 3. Tracking jitter is defined as the variation in clock edge position of PLL outputs with reference to PLL input clock edge. Tracking jitter does not measure the variation in PLL output period, which is covered by period jitter parameter.
1, 2 1, 2 1, 2
Min. 1.5 0.75
Typ.
Max. 160 160 60
Units MHz MHz ps ps
Number of Programmable Values in Each Programmable Delay Block Input Cycle-to-Cycle Jitter (peak magnitude) CCC Output Peak-to-Peak Period Jitter FCCC_OUT
ns
External FB Used 0.75% 1.50% 3.75%
3 Global Networks Used 0.70% 1.20% 2.75%
0.50% 1.00% 2.50%
300 6.0
s ms
4 3 48.5 2.3 0.025 5.7 51.5 20.86 20.86
ns ns % ns ns ns
Output Signal
Tperiod_max
Tperiod_min
Note: Peak-to-peak jitter measurements are defined by Tpeak-to-peak = Tperiod_max - Tperiod_min. Figure 2-40 * Peak-to-Peak Jitter Definition
A dv a n c e v 0. 3
2 - 93
IGLOOe DC and Switching Characteristics
Embedded SRAM and FIFO Characteristics
SRAM
RAM4K9 ADDRA11 ADDRA10 ADDRA0 DINA8 DINA7 DOUTA8 DOUTA7 DOUTA0 RAM512X18 RADDR8 RADDR7 RADDR0 RD17 RD16 RD0
DINA0
RW1 RW0
WIDTHA1 WIDTHA0 PIPEA WMODEA BLKA WENA CLKA ADDRB11 ADDRB10 ADDRB0 DINB8 DINB7 DOUTB8 DOUTB7 DOUTB0
PIPE
REN RCLK WADDR8 WADDR7
WADDR0 WD17 WD16
WD0 DINB0 WIDTHB1 WIDTHB0 PIPEB WMODEB BLKB WENB CLKB RESET WW1 WW0
WEN WCLK RESET
Figure 2-41 * RAM Models
2 -9 4
A d v a n c e v 0. 3
IGLOOe DC and Switching Characteristics
Timing Waveforms
tCYC tCKH CLK tAS ADD A0 tBKS BLK_B tENS WEN_B tCKQ1 DO Dn D0 tDOH1
Figure 2-42 * RAM Read for Pass-Through Output
tCKL
tAH A1 A2 tBKH tENH
D1
D2
tCYC tCKH CLK t ADD tBKS BLK_B tENS WEN_B tCKQ2 DO Dn D0 tDOH2
Figure 2-43 * RAM Read for Pipelined Output
AS
tCKL
tAH A0 A1 A2 tBKH tENH
D1
A dv a n c e v 0. 3
2 - 95
IGLOOe DC and Switching Characteristics
tCYC tCKH CLK tAS ADD tBKS tBKH BLK_B tENS WEN_B tDS DI DI0 tDH DI1 tENH A0 tAH A1 A2 tCKL
DO
Dn
D2
Figure 2-44 * RAM Write, Output Retained (WMODE = 0)
tCYC tCKH CLK tAS ADD tBKS BLK_B tENS WEN_B tDS DI DO (pass-through) DO (pipelined) DI0 tDH DI1 DI2 tBKH A0 tAH A1 A2 tCKL
Dn
DI0
DI1
Dn
DI0
DI1
Figure 2-45 * RAM Write, Output as Write Data (WMODE = 1)
2 -9 6
A d v a n c e v 0. 3
IGLOOe DC and Switching Characteristics
CLK1 tAS ADD1 tDS DI1 tAH A0 tDH D1 tCCKH CLK2 WEN_B1 WEN_B2 ADD2 DI2 DO2 (pass-through) DO2 (pipelined) A0 D0 tCKQ1 Dn D0 tCKQ2 Dn D0 A1 D2 A3 D3
tAS
tAH A0 A4 D4
Figure 2-46 * Write Access after Write onto Same Address
A dv a n c e v 0. 3
2 - 97
IGLOOe DC and Switching Characteristics
CLK1 tAS tAH ADD1 DI1 CLK2 WEN_B1 WEN_B2 tAS tAH ADD2 DO2 (pass-through) DO2 (pipelined) Dn Dn A0 tCKQ1 D0 tCKQ2 D0 D1 A1 A4 A0 tDS tDH D0 tWRO A2 D2 A3 D3
Figure 2-47 * Read Access after Write onto Same Address
2 -9 8
A d v a n c e v 0. 3
IGLOOe DC and Switching Characteristics
CLK1 tAS ADD1 WEN_B1 tCKQ1 DO1 (pass-through) DO1 (pipelined) CLK2 tAS ADD2 A0 D1 tAH A1 D2 A3 D3 Dn D0 tCKQ2 Dn tCCKH D0 tCKQ1 D1 tAH A0 A1 A0
DI2 WEN_B2
Figure 2-48 * Write Access after Read onto Same Address
tCYC tCKH CLK tCKL
RESET_B tRSTBQ DO Dm Dn
Figure 2-49 * RAM Reset
A dv a n c e v 0. 3
2 - 99
IGLOOe DC and Switching Characteristics
Timing Characteristics
Applies to 1.5 V DC Core Voltage
Table 2-137 * RAM4K9 Commercial-Case Conditions: TJ = 70C, Worst-Case VCC = 1.425 V Parameter tAS tAH tENS tENH tBKS tBKH tDS tDH tCKQ1 tCKQ2 tWRO tCCKH tRSTBQ tREMRSTB tRECRSTB tMPWRSTB tCYC FMAX Address Setup Time Address Hold Time REN_B, WEN_B Setup Time REN_B, WEN_B Hold Time BLK_B Setup Time BLK_B Hold Time Input Data (DI) Setup Time Input Data (DI) Hold Time Clock HIGH to New Data Valid on DO (output retained, WMODE = 0) Clock HIGH to New Data Valid on DO (pass-through, WMODE = 1) Clock HIGH to New Data Valid on DO (pipelined) Address collision clk-to-clk delay for reliable read access after write on same address Address collision clk-to-clk delay for reliable write access after write/read on same address RESET_B LOW to Data Out LOW on DO (pass-through) RESET_B LOW to Data Out LOW on DO (pipelined) RESET_B Removal RESET_B Recovery RESET_B Minimum Pulse Width Clock Cycle Time Maximum Frequency Description Std. 0.83 0.16 0.81 0.16 1.65 0.16 0.71 0.36 3.53 3.06 1.81 TBD TBD 2.06 2.06 0.61 3.21 0.68 6.24 160 Units ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns MHz
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.
2 -1 0 0
A d v a n c e v 0. 3
IGLOOe DC and Switching Characteristics Table 2-138 * RAM512X18 Commercial-Case Conditions: TJ = 70C, Worst-Case VCC = 1.425 V Parameter tAS tAH tENS tENH tDS tD H tCKQ1 tCKQ2 tWRO tCCKH tRSTBQ tREMRSTB tRECRSTB tMPWRSTB tCYC FMAX Address Setup Time Address Hold Time REN_B, WEN_B Setup Time REB_B, WEN_B Hold Time Input Data (DI) Setup Time Input Data (DI) Hold Time Clock HIGH to New Data Valid on DO (output retained, WMODE = 0) Clock HIGH to New Data Valid on DO (pipelined) Address collision clk-to-clk delay for reliable read access after write on same address Address collision clk-to-clk delay for reliable write access after write/read on same address RESET_B LOW to Data Out LOW on DO (pass-through) RESET_B LOW to Data Out LOW on DO (pipelined) RESET_B Removal RESET_B Recovery RESET_B Minimum Pulse Width Clock Cycle Time Maximum Frequency Description Std. 0.83 0.16 0.73 0.08 0.71 0.36 4.21 1.71 TBD TBD 2.06 2.06 0.61 3.21 0.68 6.24 160 Units ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns MHz
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.
A dv a n c e v 0. 3
2 -101
IGLOOe DC and Switching Characteristics
Applies to 1.2 V DC Core Voltage
Table 2-139 * RAM4K9 Commercial-Case Conditions: TJ = 70C, Worst-Case VCC = 1.14 V Parameter tAS tAH tENS tENH tBKS tBKH tDS tDH tCKQ1 tCKQ2 tWRO tCCKH tRSTBQ tREMRSTB tRECRSTB tMPWRSTB tCYC FMAX Address Setup Time Address Hold Time REN_B, WEN_B Setup Time REN_B, WEN_B Hold Time BLK_B Setup Time BLK_B Hold Time Input Data (DI) Setup Time Input Data (DI) Hold Time Clock HIGH to New Data Valid on DO (output retained, WMODE = 0) Clock HIGH to New Data Valid on DO (pass-through, WMODE = 1) Clock HIGH to New Data Valid on DO (pipelined) Address collision clk-to-clk delay for reliable read access after write on same address Address collision clk-to-clk delay for reliable write access after write/read on same address RESET_B LOW to Data Out LOW on DO (pass-through) RESET_B LOW to Data Out LOW on DO (pipelined) RESET_B Removal RESET_B Recovery RESET_B Minimum Pulse Width Clock Cycle Time Maximum Frequency Description Std. 1.53 0.29 1.50 0.29 3.05 0.29 1.33 0.66 6.61 5.72 3.38 TBD TBD 3.86 3.86 1.12 5.93 1.18 10.90 92 Units ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns MHz
Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-6 for derating values.
2 -1 0 2
A d v a n c e v 0. 3
IGLOOe DC and Switching Characteristics Table 2-140 * RAM512X18 Commercial-Case Conditions: TJ = 70C, Worst-Case VCC = 1.14 V Parameter tAS tAH tENS tENH tDS tD H tCKQ1 tCKQ2 tWRO tCCKH tRSTBQ tREMRSTB tRECRSTB tMPWRSTB tCYC FMAX Address Setup Time Address Hold Time REN_B, WEN_B Setup Time REB_B, WEN_B Hold Time Input Data (DI) Setup Time Input Data (DI) Hold Time Clock HIGH to New Data Valid on DO (output retained, WMODE = 0) Clock HIGH to New Data Valid on DO (pipelined) Address collision clk-to-clk delay for reliable read access after write on same address Address collision clk-to-clk delay for reliable write access after write/read on same address RESET_B LOW to Data Out LOW on DO (pass-through) RESET_B LOW to Data Out LOW on DO (pipelined) RESET_B Removal RESET_B Recovery RESET_B Minimum Pulse Width Clock Cycle Time Maximum Frequency Description Std. 1.53 0.29 1.36 0.15 1.33 0.66 7.88 3.20 TBD TBD 3.86 3.86 1.12 5.93 1.18 10.90 92 Units ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns MHz
Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-6 for derating values.
A dv a n c e v 0. 3
2 -103
IGLOOe DC and Switching Characteristics
FIFO
FIFO4K18 RW2 RW1 RW0 WW2 WW1 WW0 ESTOP FSTOP AEVAL11 AEVAL10 RD17 RD16
RD0 FULL AFULL EMPTY AEMPTY
AEVAL0 AFVAL11 AFVAL10
AFVAL0 REN RBLK RCLK WD17 WD16
WD0 WEN WBLK WCLK RPIPE
RESET
Figure 2-50 * FIFO Model
2 -1 0 4
A d v a n c e v 0. 3
IGLOOe DC and Switching Characteristics
Timing Waveforms
RCLK/ WCLK tMPWRSTB RESET_B tRSTFG EMPTY tRSTAF AEMPTY tRSTFG FULL tRSTAF AFULL WA/RA (Address Counter)
Figure 2-51 * FIFO Reset
tRSTCK
MATCH (A0)
tCYC RCLK tRCKEF EMPTY tCKAF AEMPTY WA/RA (Address Counter)
NO MATCH
NO MATCH
Dist = AEF_TH
MATCH (EMPTY)
Figure 2-52 * FIFO EMPTY Flag and AEMPTY Flag Assertion
A dv a n c e v 0. 3
2 -105
IGLOOe DC and Switching Characteristics
tCYC WCLK tWCKFF FULL tCKAF AFULL
WA/RA NO MATCH (Address Counter)
NO MATCH
Dist = AFF_TH
MATCH (FULL)
Figure 2-53 * FIFO FULL Flag and AFULL Flag Assertion
WCLK
WA/RA (Address Counter)
MATCH (EMPTY)
NO MATCH
NO MATCH 2nd Rising Edge After 1st Write tRCKEF
NO MATCH
NO MATCH
Dist = AEF_TH + 1
RCLK
1st Rising Edge After 1st Write
EMPTY tCKAF AEMPTY
Figure 2-54 * FIFO EMPTY Flag and AEMPTY Flag Deassertion
RCLK WA/RA MATCH (FULL) NO MATCH (Address Counter) 1st Rising Edge After 1st WCLK Read FULL tCKAF AFULL NO MATCH 1st Rising Edge After 2nd Read tWCKF NO MATCH NO MATCH Dist = AFF_TH - 1
Figure 2-55 * FIFO FULL Flag and AFULL Flag Deassertion
2 -1 0 6
A d v a n c e v 0. 3
IGLOOe DC and Switching Characteristics
Timing Characteristics
Applies to 1.5 V DC Core Voltage
Table 2-141 * FIFO Commercial-Case Conditions: TJ = 70C, VCC = 1.425 V Parameter tENS tENH tBKS tBKH tDS tDH tCKQ1 tCKQ2 tRCKEF tWCKFF tCKAF tRSTFG tRSTAF tRSTBQ REN_B, WEN_B Setup Time REN_B, WEN_B Hold Time BLK_B Setup Time BLK_B Hold Time Input Data (DI) Setup Time Input Data (DI) Hold Time Clock HIGH to New Data Valid on DO (pass-through) Clock HIGH to New Data Valid on DO (pipelined) RCLK HIGH to Empty Flag Valid WCLK HIGH to Full Flag Valid Clock HIGH to Almost Empty/Full Flag Valid RESET_B LOW to Empty/Full Flag Valid RESET_B LOW to Almost Empty/Full Flag Valid RESET_B LOW to Data Out LOW on DO (pass-through) RESET_B LOW to Data Out LOW on DO (pipelined) tREMRSTB tRECRSTB tMPWRSTB tCYC FMAX RESET_B Removal RESET_B Recovery RESET_B Minimum Pulse Width Clock Cycle Time Maximum Frequency Description Std. 1.99 0.16 0.30 0.00 0.76 0.25 3.33 1.80 3.53 3.35 12.85 3.48 12.72 2.02 2.02 0.61 3.21 0.68 6.24 160 Units ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns MHz
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.
A dv a n c e v 0. 3
2 -107
IGLOOe DC and Switching Characteristics
Applies to 1.2 V DC Core Voltage
Table 2-142 * FIFO Commercial-Case Conditions: TJ = 70C, VCC = 1.14 V Parameter tENS tENH tBKS tBKH tDS tDH tCKQ1 tCKQ2 tRCKEF tWCKFF tCKAF tRSTFG tRSTAF tRSTBQ REN_B, WEN_B Setup Time REN_B, WEN_B Hold Time BLK_B Setup Time BLK_B Hold Time Input Data (DI) Setup Time Input Data (DI) Hold Time Clock HIGH to New Data Valid on DO (pass-through) Clock HIGH to New Data Valid on DO (pipelined) RCLK HIGH to Empty Flag Valid WCLK HIGH to Full Flag Valid Clock HIGH to Almost Empty/Full Flag Valid RESET_B LOW to Empty/Full Flag Valid RESET_B LOW to Almost Empty/Full Flag Valid RESET_B LOW to Data Out LOW on DO (pass-through) RESET_B LOW to Data Out LOW on DO (pipelined) tREMRSTB tRECRSTB tMPWRSTB tCYC FMAX RESET_B Removal RESET_B Recovery RESET_B Minimum Pulse Width Clock Cycle Time Maximum Frequency Description Std. 4.13 0.31 0.47 0.00 1.56 0.49 6.80 3.62 7.23 6.85 26.61 7.12 26.33 4.09 4.09 1.23 6.58 1.18 10.90 92 Units ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns MHz
Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-6 for derating values.
2 -1 0 8
A d v a n c e v 0. 3
IGLOOe DC and Switching Characteristics
Embedded FlashROM Characteristics
tSU CLK tHOLD tSU tHOLD tSU tHOLD
Address
A0 tCKQ2
A1 tCKQ2 D0 tCKQ2 D1
Data
D0
Figure 2-56 * Timing Diagram
Timing Characteristics
Applies to 1.5 V DC Core Voltage
Table 2-143 * Embedded FlashROM Access Time Commercial-Case Conditions: TJ = 70C, VCC = 1.425 V Parameter tSU tHOLD tCK2Q FMAX Address Setup Time Address Hold Time Clock-to-Out Maximum Clock Frequency Description Std. 0.58 0.00 34.14 15 Units ns ns ns MHz
Applies to 1.2 V DC Core Voltage
Table 2-144 * Embedded FlashROM Access Time Commercial-Case Conditions: TJ = 70C, VCC = 1.14 V Parameter tSU tHOLD tCK2Q FMAX Address Setup Time Address Hold Time Clock-to-Out Maximum Clock Frequency Description Std. 0.59 0.00 52.90 10 Units ns ns ns MHz
A dv a n c e v 0. 3
2 -109
IGLOOe DC and Switching Characteristics
JTAG 1532 Characteristics
JTAG timing delays do not include JTAG I/Os. To obtain complete JTAG timing, add I/O buffer delays to the corresponding standard selected; refer to the I/O timing characteristics in the "User I/O Characteristics" section on page 2-16 for more details.
Timing Characteristics
Applies to 1.2 V DC Core Voltage
Table 2-145 * JTAG 1532 Commercial-Case Conditions: TJ = 70C, VCC = 1.14 V Parameter tDISU tDIHD tTMSSU tTMDHD tTCK2Q tRSTB2Q FTCKMAX tTRSTREM tTRSTREC tTRSTMPW Description Test Data Input Setup Time Test Data Input Hold Time Test Mode Select Setup Time Test Mode Select Hold Time Clock to Q (data out) Reset to Q (data out) TCK Maximum Frequency ResetB Removal Time ResetB Recovery Time ResetB Minimum Pulse Std. 1.50 3.00 1.50 3.00 11.00 30.00 9.00 1.18 0.00 TBD Units ns ns ns ns ns ns MHz ns ns ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-6 for derating values.
Applies to 1.5 V DC Core Voltage
Table 2-146 * JTAG 1532 Commercial-Case Conditions: TJ = 70C, VCC = 1.425 V Parameter tDISU tDIHD tTMSSU tTMDHD tTCK2Q tRSTB2Q FTCKMAX tTRSTREM tTRSTREC tTRSTMPW Description Test Data Input Setup Time Test Data Input Hold Time Test Mode Select Setup Time Test Mode Select Hold Time Clock to Q (data out) Reset to Q (data out) TCK Maximum Frequency ResetB Removal Time ResetB Recovery Time ResetB Minimum Pulse Std. 1.00 2.00 1.00 2.00 8.00 25.00 15.00 0.58 0.00 TBD Units ns ns ns ns ns ns MHz ns ns ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.
2 -1 1 0
A d v a n c e v 0. 3
IGLOOe DC and Switching Characteristics
Part Number and Revision Date
Part Number 51700096-002-2 Revised July 2008
List of Changes
The following table lists critical changes that were made in the current version of the chapter. Previous Version Advance v0.2 (June 2008) Advance v0.1 (January 2008) Changes in Current Version (Advance v0.3) As a result of the Libero IDE v8.4 release, Actel now offers a wide range of core voltage support. The document was updated to change 1.2 V / 1.5 V to 1.2 V to 1.5 V. Tables have been updated to reflect default values in the software. The default I/O capacitance is 5 pF. Tables have been updated to include the LVCMOS 1.2 V I/O set. DDR Tables have two additional data points added to reflect both edges for Input DDR setup and hold time. The power data table has been updated to match SmartPower data rather then simulation values. Table 2-1 * Absolute Maximum Ratings was updated to add VMV to the VCCI parameter row and remove the word "output" from the parameter description for VCCI. Table note 3 was added. Table 2-2 * Recommended Operating Conditions 4 was updated to include the TJ parameter. Table note 9 is new. In Table 2-3 * Flash Programming Limits - Retention, Storage, and Operating Temperature1, the maximum operating junction temperature was changed from 110 to 100. VMV was removed fromTable 2-4 * Overshoot and Undershoot Limits 1. The title of the table was revised to remove "as measured on quiet I/Os." Table note 2 was revised to remove "estimated SSO density over cycles." Table note 3 was deleted. The "PLL Behavior at Brownout Condition" section is new. Figure 2-2 * V2 Devices - I/O State as a Function of VCCI and VCC Voltage Levels is new. EQ 2-2 was updated. The temperature was changed to 100C, and therefore the end result changed. The table notes for Table 2-8 * Quiescent Supply Current (IDD), IGLOOe Flash*Freeze Mode*, Table 2-9 * Quiescent Supply Current (IDD), IGLOOe Sleep Mode (VCC = 0 V)*, and Table 2-10 * Quiescent Supply Current (IDD), IGLOOe Shutdown Mode (VCC, VCCI = 0 V)* were updated to remove VMV and include PDC6 and PDC7. VCCI and VJTAG were removed from the statement about IDD in the table note for Table 2-9 * Quiescent Supply Current (IDD), IGLOOe Sleep Mode (VCC = 0 V)*. Note 2 of Table 2-11 * Quiescent Supply Current, No IGLOOe Flash*Freeze Mode* was updated to include VCCPLL. Note 4 was updated to include PDC6 and PDC7. Table note 3 was added to Table 2-12 * Summary of I/O Input Buffer Power (per pin) - Default I/O Software Settings and referenced for 1.2 V LVCMOS. 2-1 Page 2-2
N/A
2-2 2-2
2-3
2-4 2-5 2-6 2-7
2-8
2-9
A dv a n c e v 0. 3
2 -111
IGLOOe DC and Switching Characteristics
Previous Version Advance v0.1 (continued)
Changes in Current Version (Advance v0.3) Table 2-13 * Summary of I/O Output Buffer Power (per pin) - Default I/O Software Settings1 was updated to change PDC3 to PDC7. The table notes were updated to reflect that power was measured on VCCI. Table note 4 is new. Table 2-15 * Different Components Contributing to the Static Power Consumption in IGLOO Devices and Table 2-17 * Different Components Contributing to the Static Power Consumption in IGLOO Devices were updated to add PDC6 and PDC7, and to change the definition for PDC5 to bank quiescent power. A table subtitle was added for Table 2-17 * Different Components Contributing to the Static Power Consumption in IGLOO Devices The "Total Static Power Consumption--PSTAT" section was updated to revise the calculation of PSTAT, including PDC6 and PDC7. Footnote 1 was updated to include information about PAC13. The PLL Contribution equation was changed from: PPLL = PAC13 + PAC14 * FCLKOUT to PPLL = PDC4 + PAC13 * FCLKOUT. The "Timing Model" was updated to be consistent with the revised timing numbers. In Table 2-21 * Summary of Maximum and Minimum DC Input Levels, TJ was changed to TA in notes 1 and 2. Table 2-31 * Schmitt Trigger Input Hysteresis was updated to included a hysteresis value for 1.2 V LVCMOS (Schmitt trigger mode). All AC Loading figures for single-ended I/O standards were changed from Datapaths at 35 pF to 5 pF. The "1.2 V LVCMOS (JESD8-12A)" section is new.
Page 2-10
2-11, 2-12
2-12 2-13 2-14
2-16 2-21 2-28 N/A 2-41 N/A
Advance v0.4 (December 2007) Advance v0.3 (September 2007)
This document was previously in datasheet Advance v0.4. As a result of moving to the handbook format, Actel has restarted the version numbers. The new version number is Advance v0.1. Table 2-4 * IGLOOe CCC/PLL Specification and Table 2-5 * IGLOOe CCC/PLL Specification were updated. The "During Flash*Freeze Mode" section was updated to include information about the output of the I/O to the FPGA core. Figure 2-38 * Flash*Freeze Mode Type 1 - Timing Diagram was updated to modify the LSICC signal. Table 2-32 * Flash*Freeze Pin Location in IGLOOe Family Packages (deviceindependent) was updated for the FG896 package. Figure 2-40 * Flash*Freeze Mode Type 2 - Timing Diagram was updated to modify the LSICC Signal. Information regarding calculation of the quiescent supply current was added to the "Quiescent Supply Current" section. Table 3-8 * Quiescent Supply Current (IDD), IGLOOe Flash*Freeze Mode was updated. Table 3-9 * Quiescent Supply Current (IDD), IGLOOe Sleep Mode (VCC = 0 V) was updated. Table 3-11 * Quiescent Supply Current, No IGLOOe Flash*Freeze Mode1 was updated.
2-18, 2-19 2-60 2-56 2-64 2-58 3-6 3-6 3-6 3-6
2 -1 1 2
A d v a n c e v 0. 3
IGLOOe DC and Switching Characteristics
Previous Version Advance v0.3 (continued)
Changes in Current Version (Advance v0.3) Table 3-99 * Minimum and Maximum DC Input and Output Levels was updated. Table 3-136 * JTAG 1532 and Table 3-135 * JTAG 1532 were updated.
Page 3-51 3-95 3-2
Advance v0.1
The TJ parameter in Table 3-2 * Recommended Operating Conditions was changed to TA, ambient temperature, and table notes 6-8 were added.
Actel Safety Critical, Life Support, and High-Reliability Applications Policy
The Actel products described in this advance status datasheet may not have completed Actel's qualification process. Actel may amend or enhance products during the product introduction and qualification process, resulting in changes in device functionality or performance. It is the responsibility of each customer to ensure the fitness of any Actel product (but especially a new product) for a particular purpose, including appropriateness for safety-critical, life-support, and other high-reliability applications. Consult Actel's Terms and Conditions for specific liability exclusions relating to life-support applications. A reliability report covering all of Actel's products is available on the Actel website at http://www.actel.com/documents/ORT_Report.pdf. Actel also offers a variety of enhanced qualification and lot acceptance screening procedures. Contact your local Actel sales office for additional reliability information.
A dv a n c e v 0. 3
2 -113
IGLOO(R)e Packaging
3 - Package Pin Assignments
256-Pin FBGA
A1 Ball Pad Corner 16 15 14 13 12 11 10 9 8 7 654 321 A B C D E F G H J K L M N P R T
Note: This is the bottom view of the package.
Note
For Package Manufacturing and Environmental information, visit the Resource Center at http://www.actel.com/products/solutions/package/docs.aspx.
v1.1
3-1
Package Pin Assignments
256-Pin FBGA Pin Number A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 A16 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 B13 B14 B15 B16 C1 C2 C3 AGLE600 Function GND GAA0/IO00NDB0V0 GAA1/IO00PDB0V0 GAB0/IO01NDB0V0 IO05PDB0V0 IO10PDB0V1 IO12PDB0V2 IO16NDB0V2 IO23NDB1V0 IO23PDB1V0 IO28NDB1V1 IO28PDB1V1 GBB1/IO34PDB1V1 GBA0/IO35NDB1V1 GBA1/IO35PDB1V1 GND GAB2/IO133PDB7V1 GAA2/IO134PDB7V 1 GNDQ GAB1/IO01PDB0V0 IO05NDB0V0 IO10NDB0V1 IO12NDB0V2 IO16PDB0V2 IO20NDB1V0 IO24NDB1V0 IO24PDB1V0 GBC1/IO33PDB1V1 GBB0/IO34NDB1V1 GNDQ GBA2/IO36PDB2V0 IO42NDB2V0 IO133NDB7V1 IO134NDB7V1 VMV7
256-Pin FBGA Pin Number C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15 D16 E1 E2 E3 E4 E5 E6 E7 AGLE600 Function VCCPLA GAC0/IO02NDB0V0 GAC1/IO02PDB0V0 IO15NDB0V2 IO15PDB0V2 IO20PDB1V0 IO25NDB1V0 IO27PDB1V0 GBC0/IO33NDB1V1 VCCPLB VMV2 IO36NDB2V0 IO42PDB2V0 IO128PDB7V1 IO129PDB7V1 GAC2/IO132PDB7V1 VCOMPLA GNDQ IO09NDB0V1 IO09PDB0V1 IO13PDB0V2 IO21PDB1V0 IO25PDB1V0 IO27NDB1V0 GNDQ VCOMPLB GBB2/IO37PDB2V0 IO39PDB2V0 IO39NDB2V0 IO128NDB7V1 IO129NDB7V1 IO132NDB7V1 IO130PDB7V1 VMV0 VCCIB0 VCCIB0
256-Pin FBGA Pin Number E8 E9 E10 E11 E12 E13 E14 E15 E16 F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16 G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11 AGLE600 Function IO13NDB0V2 IO21NDB1V0 VCCIB1 VCCIB1 VMV1 GBC2/IO38PDB2V0 IO37NDB2V0 IO41NDB2V0 IO41PDB2V0 IO124PDB7V0 IO125PDB7V0 IO126PDB7V0 IO130NDB7V1 VCCIB7 GND VCC VCC VCC VCC GND VCCIB2 IO38NDB2V0 IO40NDB2V0 IO40PDB2V0 IO45PSB2V1 IO124NDB7V0 IO125NDB7V0 IO126NDB7V0 GFC1/IO120PPB7V0 VCCIB7 VCC GND GND GND GND VCC
3 -2
v1.1
IGLOOe Packaging
256-Pin FBGA Pin Number G12 G13 G14 G15 G16 H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H11 H12 H13 H14 H15 H16 J1 J2 J3 J4 J5 J6 J7 J8 J9 J10 J11 J12 J13 J14 J15 AGLE600 Function VCCIB2 GCC1/IO50PPB2V1 IO44NDB2V1 IO44PDB2V1 IO49NSB2V1 GFB0/IO119NPB7V0 GFA0/IO118NDB6V1 GFB1/IO119PPB7V0 VCOMPLF GFC0/IO120NPB7V0 VCC GND GND GND GND VCC GCC0/IO50NPB2V1 GCB1/IO51PPB2V1 GCA0/IO52NPB3V0 VCOMPLC GCB0/IO51NPB2V1 GFA2/IO117PSB6V1 GFA1/IO118PDB6V1 VCCPLF IO116NDB6V1 GFB2/IO116PDB6V1 VCC GND GND GND GND VCC GCB2/IO54PPB3V0 GCA1/IO52PPB3V0 GCC2/IO55PPB3V0 VCCPLC
256-Pin FBGA Pin Number J16 K1 K2 K3 K4 K5 K6 K7 K8 K9 K10 K11 K12 K13 K14 K15 K16 L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12 L13 L14 L15 L16 M1 M2 M3 AGLE600 Function GCA2/IO53PSB3V0 GFC2/IO115PSB6V1 IO113PPB6V1 IO112PDB6V1 IO112NDB6V1 VCCIB6 VCC GND GND GND GND VCC VCCIB3 IO54NPB3V0 IO57NPB3V0 IO55NPB3V0 IO57PPB3V0 IO113NPB6V1 IO109PPB6V0 IO108PDB6V0 IO108NDB6V0 VCCIB6 GND VCC VCC VCC VCC GND VCCIB3 GDB0/IO66NPB3V1 IO60NDB3V1 IO60PDB3V1 IO61PDB3V1 IO109NPB6V0 IO106NDB6V0 IO106PDB6V0
256-Pin FBGA Pin Number M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 M14 M15 M16 N1 N2 N3 N4 N5 N6 N7 N8 N9 N10 N11 N12 N13 N14 N15 N16 P1 P2 P3 P4 P5 P6 P7 AGLE600 Function GEC0/IO104NPB6V0 VMV5 VCCIB5 VCCIB5 IO84NDB5V0 IO84PDB5V0 VCCIB4 VCCIB4 VMV3 VCCPLD GDB1/IO66PPB3V1 GDC1/IO65PDB3V1 IO61NDB3V1 IO105PDB6V0 IO105NDB6V0 GEC1/IO104PPB6V0 VCOMPLE GNDQ GEA2/IO101PPB5V2 IO92NDB5V1 IO90NDB5V1 IO82NDB5V0 IO74NDB4V1 IO74PDB4V1 GNDQ VCOMPLD VJTAG GDC0/IO65NDB3V1 GDA1/IO67PDB3V1 GEB1/IO103PDB6V0 GEB0/IO103NDB6V0 VMV6 VCCPLE IO101NPB5V2 IO95PPB5V1 IO92PDB5V1
v1.1
3-3
Package Pin Assignments
256-Pin FBGA Pin Number P8 P9 P10 P11 P12 P13 P14 P15 P16 R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15 R16 T1 T2 T3 T4 T5 T6 T7 T8 T9 AGLE600 Function IO90PDB5V1 IO82PDB5V0 IO76NDB4V1 IO76PDB4V1 VMV4 TCK VPUMP TRST GDA0/IO67NDB3V1 GEA1/IO102PDB6V0 GEA0/IO102NDB6V 0 GNDQ GEC2/IO99PDB5V2 IO95NPB5V1 IO91NDB5V1 IO91PDB5V1 IO83NDB5V0 IO83PDB5V0 IO77NDB4V1 IO77PDB4V1 IO69NDB4V0 GDB2/IO69PDB4V0 TDI GNDQ TDO GND IO100NDB5V2 FF/GEB2/IO100PDB5 V2 IO99NDB5V2 IO88NDB5V0 IO88PDB5V0 IO89NSB5V0 IO80NSB4V1 IO81NDB4V1
256-Pin FBGA Pin Number T10 T11 T12 T13 T14 T15 T16 AGLE600 Function IO81PDB4V1 IO70NDB4V0 GDC2/IO70PDB4V0 IO68NDB4V0 GDA2/IO68PDB4V0 TMS GND
3 -4
v1.1
IGLOOe Packaging
484-Pin FBGA
A1 Ball Pad Corner
22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
A B C D E F G H J K L M N P R T U V W Y AA AB
Note: This is the bottom view of the package.
Note
For Package Manufacturing and Environmental information, visit the Resource Center at http://www.actel.com/products/solutions/package/docs.aspx.
v1.1
3-5
Package Pin Assignments
484-Pin FBGA Pin Number A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 A16 A17 A18 A19 A20 A21 A22 AA1 AA2 AA3 AA4 AA5 AA6 AA7 AA8 AA9 AA10 AA11 AA12 AA13 AA14 AGLE600 Function GND GND VCCIB0 IO06NDB0V1 IO06PDB0V1 IO08NDB0V1 IO08PDB0V1 IO11PDB0V1 IO17PDB0V2 IO18NDB0V2 IO18PDB0V2 IO22PDB1V0 IO26PDB1V0 IO29NDB1V1 IO29PDB1V1 IO31NDB1V1 IO31PDB1V1 IO32NDB1V1 NC VCCIB1 GND GND GND VCCIB6 NC IO98PDB5V2 IO96NDB5V2 IO96PDB5V2 IO86NDB5V0 IO86PDB5V0 IO85PDB5V0 IO85NDB5V0 IO78PPB4V1 IO79NDB4V1 IO79PDB4V1 NC
484-Pin FBGA Pin Number AA15 AA16 AA17 AA18 AA19 AA20 AA21 AA22 AB1 AB2 AB3 AB4 AB5 AB6 AB7 AB8 AB9 AB10 AB11 AB12 AB13 AB14 AB15 AB16 AB17 AB18 AB19 AB20 AB21 AB22 B1 B2 B3 B4 B5 B6 AGLE600 Function NC IO71NDB4V0 IO71PDB4V0 NC NC NC VCCIB3 GND GND GND VCCIB5 IO97NDB5V2 IO97PDB5V2 IO93NDB5V1 IO93PDB5V1 IO87NDB5V0 IO87PDB5V0 NC NC IO75NDB4V1 IO75PDB4V1 IO72NDB4V0 IO72PDB4V0 IO73NDB4V0 IO73PDB4V0 NC NC VCCIB4 GND GND GND VCCIB7 NC IO03NDB0V0 IO03PDB0V0 IO07NDB0V1
484-Pin FBGA Pin Number B7 B8 B9 B10 B11 B12 B13 B14 B15 B16 B17 B18 B19 B20 B21 B22 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 C19 C20 AGLE600 Function IO07PDB0V1 IO11NDB0V1 IO17NDB0V2 IO14PDB0V2 IO19PDB0V2 IO22NDB1V0 IO26NDB1V0 NC NC IO30NDB1V1 IO30PDB1V1 IO32PDB1V1 NC NC VCCIB2 GND VCCIB7 NC NC NC GND IO04NDB0V0 IO04PDB0V0 VCC VCC IO14NDB0V2 IO19NDB0V2 NC NC VCC VCC NC NC GND NC NC
3 -6
v1.1
IGLOOe Packaging
484-Pin FBGA Pin Number C21 C22 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15 D16 D17 D18 D19 D20 D21 D22 E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 AGLE600 Function NC VCCIB2 NC NC NC GND GAA0/IO00NDB0V0 GAA1/IO00PDB0V0 GAB0/IO01NDB0V0 IO05PDB0V0 IO10PDB0V1 IO12PDB0V2 IO16NDB0V2 IO23NDB1V0 IO23PDB1V0 IO28NDB1V1 IO28PDB1V1 GBB1/IO34PDB1V1 GBA0/IO35NDB1V1 GBA1/IO35PDB1V1 GND NC NC NC NC NC GND GAB2/IO133PDB7V 1 GAA2/IO134PDB7V 1 GNDQ GAB1/IO01PDB0V0 IO05NDB0V0 IO10NDB0V1 IO12NDB0V2
484-Pin FBGA Pin Number E11 E12 E13 E14 E15 E16 E17 E18 E19 E20 E21 E22 F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16 F17 F18 F19 F20 F21 F22 G1 G2 AGLE600 Function IO16PDB0V2 IO20NDB1V0 IO24NDB1V0 IO24PDB1V0 GBC1/IO33PDB1V1 GBB0/IO34NDB1V1 GNDQ GBA2/IO36PDB2V0 IO42NDB2V0 GND NC NC NC IO131NDB7V1 IO131PDB7V1 IO133NDB7V1 IO134NDB7V1 VMV7 VCCPLA GAC0/IO02NDB0V0 GAC1/IO02PDB0V0 IO15NDB0V2 IO15PDB0V2 IO20PDB1V0 IO25NDB1V0 IO27PDB1V0 GBC0/IO33NDB1V1 VCCPLB VMV2 IO36NDB2V0 IO42PDB2V0 NC NC NC IO127NDB7V1 IO127PDB7V1 G7 G8 G9 G10 G11 G12 G13 G14 G15 G16 G17 G18 G19 G20 G21 G22 H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H11 H12 H13 H14 H15
484-Pin FBGA Pin Number G3 G4 G5 G6 AGLE600 Function NC IO128PDB7V1 IO129PDB7V1 GAC2/IO132PDB7V 1 VCOMPLA GNDQ IO09NDB0V1 IO09PDB0V1 IO13PDB0V2 IO21PDB1V0 IO25PDB1V0 IO27NDB1V0 GNDQ VCOMPLB GBB2/IO37PDB2V0 IO39PDB2V0 IO39NDB2V0 IO43PDB2V0 IO43NDB2V0 NC NC NC VCC IO128NDB7V1 IO129NDB7V1 IO132NDB7V1 IO130PDB7V1 VMV0 VCCIB0 VCCIB0 IO13NDB0V2 IO21NDB1V0 VCCIB1 VCCIB1 VMV1
v1.1
3-7
Package Pin Assignments
484-Pin FBGA Pin Number H16 H17 H18 H19 H20 H21 H22 J1 J2 J3 J4 J5 J6 J7 J8 J9 J10 J11 J12 J13 J14 J15 J16 J17 J18 J19 J20 J21 J22 K1 K2 K3 K4 K5 K6 K7 AGLE600 Function GBC2/IO38PDB2V0 IO37NDB2V0 IO41NDB2V0 IO41PDB2V0 VCC NC NC IO123NDB7V0 IO123PDB7V0 NC IO124PDB7V0 IO125PDB7V0 IO126PDB7V0 IO130NDB7V1 VCCIB7 GND VCC VCC VCC VCC GND VCCIB2 IO38NDB2V0 IO40NDB2V0 IO40PDB2V0 IO45PPB2V1 NC IO48PDB2V1 IO46PDB2V1 IO121NDB7V0 IO121PDB7V0 NC IO124NDB7V0 IO125NDB7V0 IO126NDB7V0 GFC1/IO120PPB7V0 L6 L7 L8 L9 L10 L11 L12 L13 L14 L15 L16 L17 L18 L19 L20
484-Pin FBGA Pin Number K8 K9 K10 K11 K12 K13 K14 K15 K16 K17 K18 K19 K20 K21 K22 L1 L2 L3 L4 L5 AGLE600 Function VCCIB7 VCC GND GND GND GND VCC VCCIB2 GCC1/IO50PPB2V1 IO44NDB2V1 IO44PDB2V1 IO49NPB2V1 IO45NPB2V1 IO48NDB2V1 IO46NDB2V1 NC IO122PDB7V0 IO122NDB7V0 GFB0/IO119NPB7V0 GFA0/IO118NDB6V 1 GFB1/IO119PPB7V0 VCOMPLF GFC0/IO120NPB7V0 VCC GND GND GND GND VCC GCC0/IO50NPB2V1 GCB1/IO51PPB2V1 GCA0/IO52NPB3V0 VCOMPLC GCB0/IO51NPB2V1 IO49PPB2V1
484-Pin FBGA Pin Number L21 L22 M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 M14 M15 M16 M17 M18 M19 M20 M21 M22 N1 N2 N3 N4 N5 N6 N7 N8 N9 N10 N11 N12 AGLE600 Function IO47NDB2V1 IO47PDB2V1 NC IO114NPB6V1 IO117NDB6V1 GFA2/IO117PDB6V1 GFA1/IO118PDB6V1 VCCPLF IO116NDB6V1 GFB2/IO116PDB6V1 VCC GND GND GND GND VCC GCB2/IO54PPB3V0 GCA1/IO52PPB3V0 GCC2/IO55PPB3V0 VCCPLC GCA2/IO53PDB3V0 IO53NDB3V0 IO56PDB3V0 NC IO114PPB6V1 IO111NDB6V1 NC GFC2/IO115PPB6V1 IO113PPB6V1 IO112PDB6V1 IO112NDB6V1 VCCIB6 VCC GND GND GND
3 -8
v1.1
IGLOOe Packaging
484-Pin FBGA Pin Number N13 N14 N15 N16 N17 N18 N19 N20 N21 N22 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16 P17 P18 P19 P20 P21 P22 R1 R2 R3 R4 AGLE600 Function GND VCC VCCIB3 IO54NPB3V0 IO57NPB3V0 IO55NPB3V0 IO57PPB3V0 NC IO56NDB3V0 IO58PDB3V0 NC IO111PDB6V1 IO115NPB6V1 IO113NPB6V1 IO109PPB6V0 IO108PDB6V0 IO108NDB6V0 VCCIB6 GND VCC VCC VCC VCC GND VCCIB3 GDB0/IO66NPB3V1 IO60NDB3V1 IO60PDB3V1 IO61PDB3V1 NC IO59PDB3V0 IO58NDB3V0 NC IO110PDB6V0 VCC IO109NPB6V0
484-Pin FBGA Pin Number R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15 R16 R17 R18 R19 R20 R21 R22 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 AGLE600 Function IO106NDB6V0 IO106PDB6V0 GEC0/IO104NPB6V0 VMV5 VCCIB5 VCCIB5 IO84NDB5V0 IO84PDB5V0 VCCIB4 VCCIB4 VMV3 VCCPLD GDB1/IO66PPB3V1 GDC1/IO65PDB3V1 IO61NDB3V1 VCC IO59NDB3V0 IO62PDB3V1 NC IO110NDB6V0 NC IO105PDB6V0 IO105NDB6V0 GEC1/IO104PPB6V0 VCOMPLE GNDQ GEA2/IO101PPB5V2 IO92NDB5V1 IO90NDB5V1 IO82NDB5V0 IO74NDB4V1 IO74PDB4V1 GNDQ VCOMPLD VJTAG GDC0/IO65NDB3V1 V6 V7 V8 U6 U7 U8 U9 U10 U11 U12 U13 U14 U15 U16 U17 U18 U19 U20 U21 U22 V1 V2 V3 V4 V5
484-Pin FBGA Pin Number T19 T20 T21 T22 U1 U2 U3 U4 U5 AGLE600 Function GDA1/IO67PDB3V1 NC IO64PDB3V1 IO62NDB3V1 NC IO107PDB6V0 IO107NDB6V0 GEB1/IO103PDB6V0 GEB0/IO103NDB6V 0 VMV6 VCCPLE IO101NPB5V2 IO95PPB5V1 IO92PDB5V1 IO90PDB5V1 IO82PDB5V0 IO76NDB4V1 IO76PDB4V1 VMV4 TCK VPUMP TRST GDA0/IO67NDB3V1 NC IO64NDB3V1 IO63PDB3V1 NC NC GND GEA1/IO102PDB6V 0 GEA0/IO102NDB6V 0 GNDQ GEC2/IO99PDB5V2 IO95NPB5V1
v1.1
3-9
Package Pin Assignments
484-Pin FBGA Pin Number V9 V10 V11 V12 V13 V14 V15 V16 V17 V18 V19 V20 V21 V22 W1 W2 W3 W4 W5 W6 W7 W8 W9 W10 W11 W12 W13 W14 W15 W16 W17 W18 W19 W20 W21 AGLE600 Function IO91NDB5V1 IO91PDB5V1 IO83NDB5V0 IO83PDB5V0 IO77NDB4V1 IO77PDB4V1 IO69NDB4V0 GDB2/IO69PDB4V0 TDI GNDQ TDO GND NC IO63NDB3V1 NC NC NC GND IO100NDB5V2 FF/GEB2/IO100PDB5 V2 IO99NDB5V2 IO88NDB5V0 IO88PDB5V0 IO89NDB5V0 IO80NDB4V1 IO81NDB4V1 IO81PDB4V1 IO70NDB4V0 GDC2/IO70PDB4V0 IO68NDB4V0 GDA2/IO68PDB4V0 TMS GND NC NC
484-Pin FBGA Pin Number W22 Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9 Y10 Y11 Y12 Y13 Y14 Y15 Y16 Y17 Y18 Y19 Y20 Y21 Y22 AGLE600 Function NC VCCIB6 NC NC IO98NDB5V2 GND IO94NDB5V1 IO94PDB5V1 VCC VCC IO89PDB5V0 IO80PDB4V1 IO78NPB4V1 NC VCC VCC NC NC GND NC NC NC VCCIB3
3 -1 0
v1.1
IGLOOe Packaging
484-Pin FBGA Pin Number A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 A16 A17 A18 A19 A20 A21 A22 AA1 AA2 AA3 AA4 AA5 AA6 AA7 AA8 AA9 AA10 AA11 AA12 AA13 AA14 AGLE3000 Function GND GND VCCIB0 IO10NDB0V1 IO10PDB0V1 IO16NDB0V1 IO16PDB0V1 IO18PDB0V2 IO24PDB0V2 IO28NDB0V3 IO28PDB0V3 IO46PDB1V0 IO54PDB1V1 IO56NDB1V1 IO56PDB1V1 IO64NDB1V2 IO64PDB1V2 IO72NDB1V3 IO74NDB1V4 VCCIB1 GND GND GND VCCIB6 IO228PDB5V4 IO224PDB5V3 IO218NDB5V3 IO218PDB5V3 IO212NDB5V2 IO212PDB5V2 IO198PDB5V0 IO198NDB5V0 IO188PPB4V4 IO180NDB4V3 IO180PDB4V3 IO170NDB4V2
484-Pin FBGA Pin Number AA15 AA16 AA17 AA18 AA19 AA20 AA21 AA22 AB1 AB2 AB3 AB4 AB5 AB6 AB7 AB8 AB9 AB10 AB11 AB12 AB13 AB14 AB15 AB16 AB17 AB18 AB19 AB20 AB21 AB22 B1 B2 B3 B4 B5 B6 AGLE3000 Function IO170PDB4V2 IO166NDB4V1 IO166PDB4V1 IO160NDB4V0 IO160PDB4V0 IO158NPB4V0 VCCIB3 GND GND GND VCCIB5 IO216NDB5V2 IO216PDB5V2 IO210NDB5V2 IO210PDB5V2 IO208NDB5V1 IO208PDB5V1 IO197NDB5V0 IO197PDB5V0 IO174NDB4V2 IO174PDB4V2 IO172NDB4V2 IO172PDB4V2 IO168NDB4V1 IO168PDB4V1 IO162NDB4V1 IO162PDB4V1 VCCIB4 GND GND GND VCCIB7 IO06PPB0V0 IO08NDB0V0 IO08PDB0V0 IO14NDB0V1
484-Pin FBGA Pin Number B7 B8 B9 B10 B11 B12 B13 B14 B15 B16 B17 B18 B19 B20 B21 B22 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 C19 C20 AGLE3000 Function IO14PDB0V1 IO18NDB0V2 IO24NDB0V2 IO34PDB0V4 IO40PDB0V4 IO46NDB1V0 IO54NDB1V1 IO62NDB1V2 IO62PDB1V2 IO68NDB1V3 IO68PDB1V3 IO72PDB1V3 IO74PDB1V4 IO76NPB1V4 VCCIB2 GND VCCIB7 IO303PDB7V3 IO305PDB7V3 IO06NPB0V0 GND IO12NDB0V1 IO12PDB0V1 VCC VCC IO34NDB0V4 IO40NDB0V4 IO48NDB1V0 IO48PDB1V0 VCC VCC IO70NDB1V3 IO70PDB1V3 GND IO76PPB1V4 IO88NDB2V0
v1.1
3 - 11
Package Pin Assignments
484-Pin FBGA Pin Number C21 C22 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15 D16 D17 D18 D19 D20 D21 D22 E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11 E12 AGLE3000 Function IO94PPB2V1 VCCIB2 IO293PDB7V2 IO303NDB7V3 IO305NDB7V3 GND GAA0/IO00NDB0V0 GAA1/IO00PDB0V0 GAB0/IO01NDB0V0 IO20PDB0V2 IO22PDB0V2 IO30PDB0V3 IO38NDB0V4 IO52NDB1V1 IO52PDB1V1 IO66NDB1V3 IO66PDB1V3 GBB1/IO80PDB1V4 GBA0/IO81NDB1V4 GBA1/IO81PDB1V4 GND IO88PDB2V0 IO90PDB2V1 IO94NPB2V1 IO293NDB7V2 IO299PPB7V3 GND GAB2/IO308PDB7V4 GAA2/IO309PDB7V4 GNDQ GAB1/IO01PDB0V0 IO20NDB0V2 IO22NDB0V2 IO30NDB0V3 IO38PDB0V4 IO44NDB1V0
484-Pin FBGA Pin Number E13 E14 E15 E16 E17 E18 E19 E20 E21 E22 F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16 F17 F18 F19 F20 F21 F22 G1 G2 G3 G4 AGLE3000 Function IO58NDB1V2 IO58PDB1V2 GBC1/IO79PDB1V4 GBB0/IO80NDB1V4 GNDQ GBA2/IO82PDB2V0 IO86NDB2V0 GND IO90NDB2V1 IO98PDB2V2 IO299NPB7V3 IO301NDB7V3 IO301PDB7V3 IO308NDB7V4 IO309NDB7V4 VMV7 VCCPLA GAC0/IO02NDB0V0 GAC1/IO02PDB0V0 IO32NDB0V3 IO32PDB0V3 IO44PDB1V0 IO50NDB1V1 IO60PDB1V2 GBC0/IO79NDB1V4 VCCPLB VMV2 IO82NDB2V0 IO86PDB2V0 IO96PDB2V1 IO96NDB2V1 IO98NDB2V2 IO289NDB7V1 IO289PDB7V1 IO291PPB7V2 IO295PDB7V2
484-Pin FBGA Pin Number G5 G6 G7 G8 G9 G10 G11 G12 G13 G14 G15 G16 G17 G18 G19 G20 G21 G22 H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H11 H12 H13 H14 H15 H16 H17 H18 AGLE3000 Function IO297PDB7V2 GAC2/IO307PDB7V4 VCOMPLA GNDQ IO26NDB0V3 IO26PDB0V3 IO36PDB0V4 IO42PDB1V0 IO50PDB1V1 IO60NDB1V2 GNDQ VCOMPLB GBB2/IO83PDB2V0 IO92PDB2V1 IO92NDB2V1 IO102PDB2V2 IO102NDB2V2 IO105NDB2V2 IO286PSB7V1 IO291NPB7V2 VCC IO295NDB7V2 IO297NDB7V2 IO307NDB7V4 IO287PDB7V1 VMV0 VCCIB0 VCCIB0 IO36NDB0V4 IO42NDB1V0 VCCIB1 VCCIB1 VMV1 GBC2/IO84PDB2V0 IO83NDB2V0 IO100NDB2V2
3 -1 2
v1.1
IGLOOe Packaging
484-Pin FBGA Pin Number H19 H20 H21 H22 J1 J2 J3 J4 J5 J6 J7 J8 J9 J10 J11 J12 J13 J14 J15 J16 J17 J18 J19 J20 J21 J22 K1 K2 K3 K4 K5 K6 K7 K8 K9 K10 AGLE3000 Function IO100PDB2V2 VCC VMV2 IO105PDB2V2 IO285NDB7V1 IO285PDB7V1 VMV7 IO279PDB7V0 IO283PDB7V1 IO281PDB7V0 IO287NDB7V1 VCCIB7 GND VCC VCC VCC VCC GND VCCIB2 IO84NDB2V0 IO104NDB2V2 IO104PDB2V2 IO106PPB2V3 GNDQ IO109PDB2V3 IO107PDB2V3 IO277NDB7V0 IO277PDB7V0 GNDQ IO279NDB7V0 IO283NDB7V1 IO281NDB7V0 GFC1/IO275PPB7V0 VCCIB7 VCC GND
484-Pin FBGA Pin Number K11 K12 K13 K14 K15 K16 K17 K18 K19 K20 K21 K22 L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12 L13 L14 L15 L16 L17 L18 L19 L20 L21 L22 M1 M2 AGLE3000 Function GND GND GND VCC VCCIB2 GCC1/IO112PPB2V3 IO108NDB2V3 IO108PDB2V3 IO110NPB2V3 IO106NPB2V3 IO109NDB2V3 IO107NDB2V3 IO257PSB6V2 IO276PDB7V0 IO276NDB7V0 GFB0/IO274NPB7V0 GFA0/IO273NDB6V4 GFB1/IO274PPB7V0 VCOMPLF GFC0/IO275NPB7V0 VCC GND GND GND GND VCC GCC0/IO112NPB2V3 GCB1/IO113PPB2V3 GCA0/IO114NPB3V0 VCOMPLC GCB0/IO113NPB2V3 IO110PPB2V3 IO111NDB2V3 IO111PDB2V3 GNDQ IO255NPB6V2
484-Pin FBGA Pin Number M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 M14 M15 M16 M17 M18 M19 M20 M21 M22 N1 N2 N3 N4 N5 N6 N7 N8 N9 N10 N11 N12 N13 N14 N15 N16 AGLE3000 Function IO272NDB6V4 GFA2/IO272PDB6V4 GFA1/IO273PDB6V4 VCCPLF IO271NDB6V4 GFB2/IO271PDB6V4 VCC GND GND GND GND VCC GCB2/IO116PPB3V0 GCA1/IO114PPB3V0 GCC2/IO117PPB3V0 VCCPLC GCA2/IO115PDB3V0 IO115NDB3V0 IO126PDB3V1 IO124PSB3V1 IO255PPB6V2 IO253NDB6V2 VMV6 GFC2/IO270PPB6V4 IO261PPB6V3 IO263PDB6V3 IO263NDB6V3 VCCIB6 VCC GND GND GND GND VCC VCCIB3 IO116NPB3V0
v1.1
3 - 13
Package Pin Assignments
484-Pin FBGA Pin Number N17 N18 N19 N20 N21 N22 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16 P17 P18 P19 P20 P21 P22 R1 R2 R3 R4 R5 R6 R7 R8 AGLE3000 Function IO132NPB3V2 IO117NPB3V0 IO132PPB3V2 GNDQ IO126NDB3V1 IO128PDB3V1 IO247PDB6V1 IO253PDB6V2 IO270NPB6V4 IO261NPB6V3 IO249PPB6V1 IO259PDB6V3 IO259NDB6V3 VCCIB6 GND VCC VCC VCC VCC GND VCCIB3 GDB0/IO152NPB3V4 IO136NDB3V2 IO136PDB3V2 IO138PDB3V3 VMV3 IO130PDB3V2 IO128NDB3V1 IO247NDB6V1 IO245PDB6V1 VCC IO249NPB6V1 IO251NDB6V2 IO251PDB6V2 GEC0/IO236NPB6V0 VMV5
484-Pin FBGA Pin Number R9 R10 R11 R12 R13 R14 R15 R16 R17 R18 R19 R20 R21 R22 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22 AGLE3000 Function VCCIB5 VCCIB5 IO196NDB5V0 IO196PDB5V0 VCCIB4 VCCIB4 VMV3 VCCPLD GDB1/IO152PPB3V4 GDC1/IO151PDB3V4 IO138NDB3V3 VCC IO130NDB3V2 IO134PDB3V2 IO243PPB6V1 IO245NDB6V1 IO243NPB6V1 IO241PDB6V0 IO241NDB6V0 GEC1/IO236PPB6V0 VCOMPLE GNDQ GEA2/IO233PPB5V4 IO206NDB5V1 IO202NDB5V1 IO194NDB5V0 IO186NDB4V4 IO186PDB4V4 GNDQ VCOMPLD VJTAG GDC0/IO151NDB3V4 GDA1/IO153PDB3V4 IO144PDB3V3 IO140PDB3V3 IO134NDB3V2
484-Pin FBGA Pin Number U1 U2 U3 U4 U5 U6 U7 U8 U9 U10 U11 U12 U13 U14 U15 U16 U17 U18 U19 U20 U21 U22 V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12 V13 V14 AGLE3000 Function IO240PPB6V0 IO238PDB6V0 IO238NDB6V0 GEB1/IO235PDB6V0 GEB0/IO235NDB6V0 VMV6 VCCPLE IO233NPB5V4 IO222PPB5V3 IO206PDB5V1 IO202PDB5V1 IO194PDB5V0 IO176NDB4V2 IO176PDB4V2 VMV4 TCK VPUMP TRST GDA0/IO153NDB3V4 IO144NDB3V3 IO140NDB3V3 IO142PDB3V3 IO239PDB6V0 IO240NPB6V0 GND GEA1/IO234PDB6V0 GEA0/IO234NDB6V0 GNDQ GEC2/IO231PDB5V4 IO222NPB5V3 IO204NDB5V1 IO204PDB5V1 IO195NDB5V0 IO195PDB5V0 IO178NDB4V3 IO178PDB4V3
3 -1 4
v1.1
IGLOOe Packaging
484-Pin FBGA Pin Number V15 V16 V17 V18 V19 V20 V21 V22 W1 W2 W3 W4 W5 W6 W7 W8 W9 W10 W11 W12 W13 W14 W15 W16 W17 W18 W19 W20 W21 W22 Y1 Y2 Y3 Y4 Y5 AGLE3000 Function IO155NDB4V0 GDB2/IO155PDB4V0 TDI GNDQ TDO GND IO146PDB3V4 IO142NDB3V3 IO239NDB6V0 IO237PDB6V0 IO230PSB5V4 GND IO232NDB5V4 FF/GEB2/IO232PDB5V 4 IO231NDB5V4 IO214NDB5V2 IO214PDB5V2 IO200NDB5V0 IO192NDB4V4 IO184NDB4V3 IO184PDB4V3 IO156NDB4V0 GDC2/IO156PDB4V0 IO154NDB4V0 GDA2/IO154PDB4V0 TMS GND IO150NDB3V4 IO146NDB3V4 IO148PPB3V4 VCCIB6 IO237NDB6V0 IO228NDB5V4 IO224NDB5V3 GND
484-Pin FBGA Pin Number Y6 Y7 Y8 Y9 Y10 Y11 Y12 Y13 Y14 Y15 Y16 Y17 Y18 Y19 Y20 Y21 Y22 AGLE3000 Function IO220NDB5V3 IO220PDB5V3 VCC VCC IO200PDB5V0 IO192PDB4V4 IO188NPB4V4 IO187PSB4V4 VCC VCC IO164NDB4V1 IO164PDB4V1 GND IO158PPB4V0 IO150PDB3V4 IO148NPB3V4 VCCIB3
v1.1
3 - 15
Package Pin Assignments
896-Pin FBGA
A1 Ball Pad Corner
30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 A B C D E F G H J K L M N P R T U V W Y AA AB AC AD AE AF AG AH AJ AK
Note: This is the bottom view of the package.
Note
For Package Manufacturing and Environmental information, visit the Resource Center at http://www.actel.com/products/solutions/package/docs.aspx.
3 -1 6
v1.1
IGLOOe Packaging
896-Pin FBGA Pin Number A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 A16 A17 A18 A19 A20 A21 A22 A23 A24 A25 A26 A27 A28 A29 AA1 AA2 AA3 AA4 AA5 AA6 AA7 AGLE3000 Function GND GND IO14NPB0V1 GND IO07NPB0V0 GND IO09NDB0V1 IO17NDB0V2 IO17PDB0V2 IO21NDB0V2 IO21PDB0V2 IO33NDB0V4 IO33PDB0V4 IO35NDB0V4 IO35PDB0V4 IO41NDB1V0 IO43NDB1V0 IO43PDB1V0 IO45NDB1V0 IO45PDB1V0 IO57NDB1V2 IO57PDB1V2 GND IO69PPB1V3 GND GBC1/IO79PPB1V4 GND GND IO256PDB6V2 IO248PDB6V1 IO248NDB6V1 IO246NDB6V1 GEA1/IO234PDB6V0 GEA0/IO234NDB6V0 IO243PPB6V1
896-Pin FBGA Pin Number AA8 AA9 AA10 AA11 AA12 AA13 AA14 AA15 AA16 AA17 AA18 AA19 AA20 AA21 AA22 AA23 AA24 AA25 AA26 AA27 AA28 AA29 AA30 AB1 AB2 AB3 AB4 AB5 AB6 AB7 AB8 AB9 AB10 AB11 AB12 AGLE3000 Function IO245NDB6V1 GEB1/IO235PPB6V0 VCC IO226PPB5V4 VCCIB5 VCCIB5 VCCIB5 VCCIB5 VCCIB4 VCCIB4 VCCIB4 VCCIB4 IO174PDB4V2 VCC IO142NPB3V3 IO144NDB3V3 IO144PDB3V3 IO146NDB3V4 IO146PDB3V4 IO147PDB3V4 IO139NDB3V3 IO139PDB3V3 IO133NDB3V2 IO256NDB6V2 IO244PDB6V1 IO244NDB6V1 IO241PDB6V0 IO241NDB6V0 IO243NPB6V1 VCCIB6 VCCPLE VCC IO222PDB5V3 IO218PPB5V3 IO206NDB5V1
896-Pin FBGA Pin Number AB13 AB14 AB15 AB16 AB17 AB18 AB19 AB20 AB21 AB22 AB23 AB24 AB25 AB26 AB27 AB28 AB29 AB30 AC1 AC2 AC3 AC4 AC5 AC6 AC7 AC8 AC9 AC10 AC11 AC12 AC13 AC14 AC15 AC16 AC17 AGLE3000 Function IO206PDB5V1 IO198NDB5V0 IO198PDB5V0 IO192NDB4V4 IO192PDB4V4 IO178NDB4V3 IO178PDB4V3 IO174NDB4V2 IO162NPB4V1 VCC VCCPLD VCCIB3 IO150PDB3V4 IO148PDB3V4 IO147NDB3V4 IO145PDB3V3 IO143PDB3V3 IO137PDB3V2 IO254PDB6V2 IO254NDB6V2 IO240PDB6V0 GEC1/IO236PDB6V0 IO237PDB6V0 IO237NDB6V0 VCOMPLE GND IO226NPB5V4 IO222NDB5V3 IO216NPB5V2 IO210NPB5V2 IO204NDB5V1 IO204PDB5V1 IO194NDB5V0 IO188NDB4V4 IO188PDB4V4
v1.1
3 - 17
Package Pin Assignments
896-Pin FBGA Pin Number AC18 AC19 AC20 AC21 AC22 AC23 AC24 AC25 AC26 AC27 AC28 AC29 AC30 AD1 AD2 AD3 AD4 AD5 AD6 AD6 AD7 AD8 AD9 AD10 AD11 AD12 AD13 AD14 AD15 AD16 AD17 AD18 AD19 AD20 AD21 AGLE3000 Function IO182PPB4V3 IO170NPB4V2 IO164NDB4V1 IO164PDB4V1 IO162PPB4V1 GND VCOMPLD IO150NDB3V4 IO148NDB3V4 GDA1/IO153PDB3V4 IO145NDB3V3 IO143NDB3V3 IO137NDB3V2 GND IO242NPB6V1 IO240NDB6V0 GEC0/IO236NDB6V0 VCCIB6 GNDQ GNDQ VCC VMV5 VCCIB5 IO224PPB5V3 IO218NPB5V3 IO216PPB5V2 IO210PPB5V2 IO202PPB5V1 IO194PDB5V0 IO190PDB4V4 IO182NPB4V3 IO176NDB4V2 IO176PDB4V2 IO170PPB4V2 IO166PDB4V1
896-Pin FBGA Pin Number AD22 AD23 AD24 AD25 AD26 AD27 AD28 AD29 AD30 AE1 AE2 AE3 AE4 AE5 AE5 AE6 AE7 AE8 AE9 AE10 AE11 AE12 AE13 AE14 AE15 AE16 AE17 AE18 AE19 AE20 AE21 AE22 AE23 AE24 AE25 AGLE3000 Function VCCIB4 TCK VCC TRST VCCIB3 GDA0/IO153NDB3V4 GDC0/IO151NDB3V4 GDC1/IO151PDB3V4 GND IO242PPB6V1 VCC IO239PDB6V0 IO239NDB6V0 VMV6 VMV6 GND GNDQ IO230NDB5V4 IO224NPB5V3 IO214NPB5V2 IO212NDB5V2 IO212PDB5V2 IO202NPB5V1 IO200NDB5V0 IO196PDB5V0 IO190NDB4V4 IO184PDB4V3 IO184NDB4V3 IO172PDB4V2 IO172NDB4V2 IO166NDB4V1 IO160PDB4V0 GNDQ VMV4 GND
896-Pin FBGA Pin Number AE26 AE27 AE28 AE28 AE29 AE30 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15 AF16 AF17 AF18 AF19 AF20 AF21 AF22 AF23 AF24 AF25 AF26 AF27 AF28 AF29 AGLE3000 Function GDB0/IO152NDB3V4 GDB1/IO152PDB3V4 VMV3 VMV3 VCC IO149PDB3V4 GND IO238PPB6V0 VCCIB6 IO220NPB5V3 VCC IO228NDB5V4 VCCIB5 IO230PDB5V4 IO229NDB5V4 IO229PDB5V4 IO214PPB5V2 IO208NDB5V1 IO208PDB5V1 IO200PDB5V0 IO196NDB5V0 IO186NDB4V4 IO186PDB4V4 IO180NDB4V3 IO180PDB4V3 IO168NDB4V1 IO168PDB4V1 IO160NDB4V0 IO158NPB4V0 VCCIB4 IO154NPB4V0 VCC TDO VCCIB3 GNDQ
3 -1 8
v1.1
IGLOOe Packaging
896-Pin FBGA Pin Number AF29 AF30 AG1 AG2 AG3 AG4 AG5 AG6 AG7 AG8 AG9 AG10 AG11 AG12 AG13 AG14 AG15 AG16 AG17 AG18 AG19 AG20 AG21 AG22 AG23 AG24 AG25 AG26 AG27 AG28 AG29 AG30 AH1 AH2 AH3 AGLE3000 Function GNDQ GND IO238NPB6V0 VCC IO232NPB5V4 GND IO220PPB5V3 IO228PDB5V4 IO231NDB5V4 GEC2/IO231PDB5V4 IO225NPB5V3 IO223NPB5V3 IO221PDB5V3 IO221NDB5V3 IO205NPB5V1 IO199NDB5V0 IO199PDB5V0 IO187NDB4V4 IO187PDB4V4 IO181NDB4V3 IO171PPB4V2 IO165NPB4V1 IO161NPB4V0 IO159NDB4V0 IO159PDB4V0 IO158PPB4V0 GDB2/IO155PDB4V0 GDA2/IO154PPB4V0 GND VJTAG VCC IO149NDB3V4 GND IO233NPB5V4 VCC AH5 AH6 AH7 AH8 AH9 AH10 AH11 AH12 AH13 AH14 AH15 AH16 AH17 AH18 AH19 AH20 AH21 AH22 AH23 AH24 AH25 AH26 AH27 AH28 AH29 AH30 AJ1 AJ2 AJ3 AJ4 AJ5 AJ6 AJ7
896-Pin FBGA Pin Number AH4 AGLE3000 Function FF/GEB2/IO232PPB5V 4 VCCIB5 IO219NDB5V3 IO219PDB5V3 IO227NDB5V4 IO227PDB5V4 IO225PPB5V3 IO223PPB5V3 IO211NDB5V2 IO211PDB5V2 IO205PPB5V1 IO195NDB5V0 IO185NDB4V3 IO185PDB4V3 IO181PDB4V3 IO177NDB4V2 IO171NPB4V2 IO165PPB4V1 IO161PPB4V0 IO157NDB4V0 IO157PDB4V0 IO155NDB4V0 VCCIB4 TDI VCC VPUMP GND GND GND GEA2/IO233PPB5V4 VCC IO217NPB5V2 VCC IO215NPB5V2
896-Pin FBGA Pin Number AJ8 AJ9 AJ10 AJ11 AJ12 AJ13 AJ14 AJ15 AJ16 AJ17 AJ18 AJ19 AJ20 AJ21 AJ22 AJ23 AJ24 AJ25 AJ26 AJ27 AJ28 AJ29 AJ30 AK2 AK3 AK4 AK5 AK6 AK7 AK8 AK9 AK10 AK11 AK12 AK13 AGLE3000 Function IO213NDB5V2 IO213PDB5V2 IO209NDB5V1 IO209PDB5V1 IO203NDB5V1 IO203PDB5V1 IO197NDB5V0 IO195PDB5V0 IO183NDB4V3 IO183PDB4V3 IO179NPB4V3 IO177PDB4V2 IO173NDB4V2 IO173PDB4V2 IO163NDB4V1 IO163PDB4V1 IO167NPB4V1 VCC IO156NPB4V0 VCC TMS GND GND GND GND IO217PPB5V2 GND IO215PPB5V2 GND IO207NDB5V1 IO207PDB5V1 IO201NDB5V0 IO201PDB5V0 IO193NDB4V4 IO193PDB4V4
v1.1
3 - 19
Package Pin Assignments
896-Pin FBGA Pin Number AK14 AK15 AK16 AK17 AK18 AK19 AK20 AK21 AK22 AK23 AK24 AK25 AK26 AK27 AK28 AK29 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 B13 B14 B15 B16 B17 B18 B19 AGLE3000 Function IO197PDB5V0 IO191NDB4V4 IO191PDB4V4 IO189NDB4V4 IO189PDB4V4 IO179PPB4V3 IO175NDB4V2 IO175PDB4V2 IO169NDB4V1 IO169PDB4V1 GND IO167PPB4V1 GND GDC2/IO156PPB4V0 GND GND GND GND GAA2/IO309PPB7V4 VCC IO14PPB0V1 VCC IO07PPB0V0 IO09PDB0V1 IO15PPB0V1 IO19NDB0V2 IO19PDB0V2 IO29NDB0V3 IO29PDB0V3 IO31PPB0V3 IO37NDB0V4 IO37PDB0V4 IO41PDB1V0 IO51NDB1V1 IO59PDB1V2
896-Pin FBGA Pin Number B20 B21 B22 B23 B24 B25 B26 B27 B28 B29 B30 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 C19 C20 C21 C22 C23 C24 AGLE3000 Function IO53PDB1V1 IO53NDB1V1 IO61NDB1V2 IO61PDB1V2 IO69NPB1V3 VCC GBC0/IO79NPB1V4 VCC IO64NPB1V2 GND GND GND IO309NPB7V4 VCC GAA0/IO00NPB0V0 VCCIB0 IO03PDB0V0 IO03NDB0V0 GAB1/IO01PDB0V0 IO05PDB0V0 IO15NPB0V1 IO25NDB0V3 IO25PDB0V3 IO31NPB0V3 IO27NDB0V3 IO39NDB0V4 IO39PDB0V4 IO55PPB1V1 IO51PDB1V1 IO59NDB1V2 IO63NDB1V2 IO63PDB1V2 IO67NDB1V3 IO67PDB1V3 IO75NDB1V4
896-Pin FBGA Pin Number C25 C26 C27 C28 C29 C30 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15 D16 D17 D18 D19 D20 D21 D22 D23 D24 D25 D26 D27 D28 D29 AGLE3000 Function IO75PDB1V4 VCCIB1 IO64PPB1V2 VCC GBA1/IO81PPB1V4 GND IO303PPB7V3 VCC IO305NPB7V3 GND GAA1/IO00PPB0V0 GAC1/IO02PDB0V0 IO06NPB0V0 GAB0/IO01NDB0V0 IO05NDB0V0 IO11NDB0V1 IO11PDB0V1 IO23NDB0V2 IO23PDB0V2 IO27PDB0V3 IO40PDB0V4 IO47NDB1V0 IO47PDB1V0 IO55NPB1V1 IO65NDB1V3 IO65PDB1V3 IO71NDB1V3 IO71PDB1V3 IO73NDB1V4 IO73PDB1V4 IO74NDB1V4 GBB0/IO80NPB1V4 GND GBA0/IO81NPB1V4 VCC
3 -2 0
v1.1
IGLOOe Packaging
896-Pin FBGA Pin Number D30 E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11 E12 E13 E14 E15 E16 E17 E18 E19 E20 E21 E22 E23 E24 E25 E26 E27 E28 E29 E30 F1 F2 F3 F4 AGLE3000 Function GBA2/IO82PPB2V0 GND IO303NPB7V3 VCCIB7 IO305PPB7V3 VCC GAC0/IO02NDB0V0 VCCIB0 IO06PPB0V0 IO24NDB0V2 IO24PDB0V2 IO13NDB0V1 IO13PDB0V1 IO34NDB0V4 IO34PDB0V4 IO40NDB0V4 IO49NDB1V1 IO49PDB1V1 IO50PDB1V1 IO58PDB1V2 IO60NDB1V2 IO77PDB1V4 IO68NDB1V3 IO68PDB1V3 VCCIB1 IO74PDB1V4 VCC GBB1/IO80PPB1V4 VCCIB2 IO82NPB2V0 GND IO296PPB7V2 VCC IO306PDB7V4 IO297PDB7V2
896-Pin FBGA Pin Number F5 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16 F17 F18 F19 F20 F21 F22 F23 F24 F25 F26 F26 F27 F28 F29 F30 G1 G2 G3 G4 G5 G6 G6 AGLE3000 Function VMV7 VMV7 GND GNDQ IO12NDB0V1 IO12PDB0V1 IO10PDB0V1 IO16PDB0V1 IO22NDB0V2 IO30NDB0V3 IO30PDB0V3 IO36PDB0V4 IO48NDB1V0 IO48PDB1V0 IO50NDB1V1 IO58NDB1V2 IO60PDB1V2 IO77NDB1V4 IO72NDB1V3 IO72PDB1V3 GNDQ GND VMV2 VMV2 IO86PDB2V0 IO92PDB2V1 VCC IO100NPB2V2 GND IO296NPB7V2 IO306NDB7V4 IO297NDB7V2 VCCIB7 GNDQ GNDQ
896-Pin FBGA Pin Number G7 G8 G9 G10 G11 G12 G13 G14 G15 G16 G17 G18 G19 G20 G21 G22 G23 G24 G25 G25 G26 G27 G28 G29 G30 H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 AGLE3000 Function VCC VMV0 VCCIB0 IO10NDB0V1 IO16NDB0V1 IO22PDB0V2 IO26PPB0V3 IO38NPB0V4 IO36NDB0V4 IO46NDB1V0 IO46PDB1V0 IO56NDB1V1 IO56PDB1V1 IO66NDB1V3 IO66PDB1V3 VCCIB1 VMV1 VCC GNDQ GNDQ VCCIB2 IO86NDB2V0 IO92NDB2V1 IO100PPB2V2 GND IO294PDB7V2 IO294NDB7V2 IO300NDB7V3 IO300PDB7V3 IO295PDB7V2 IO299PDB7V3 VCOMPLA GND IO08NDB0V0 IO08PDB0V0
v1.1
3 - 21
Package Pin Assignments
896-Pin FBGA Pin Number H11 H12 H13 H14 H15 H16 H17 H18 H19 H20 H21 H22 H23 H24 H25 H26 H27 H28 H29 H30 J1 J2 J3 J4 J5 J6 J7 J8 J9 J10 J11 J12 J13 J14 J15 AGLE3000 Function IO18PDB0V2 IO26NPB0V3 IO28NDB0V3 IO28PDB0V3 IO38PPB0V4 IO42NDB1V0 IO52NDB1V1 IO52PDB1V1 IO62NDB1V2 IO62PDB1V2 IO70NDB1V3 IO70PDB1V3 GND VCOMPLB GBC2/IO84PDB2V0 IO84NDB2V0 IO96PDB2V1 IO96NDB2V1 IO89PDB2V0 IO89NDB2V0 IO290NDB7V2 IO290PDB7V2 IO302NDB7V3 IO302PDB7V3 IO295NDB7V2 IO299NDB7V3 VCCIB7 VCCPLA VCC IO04NPB0V0 IO18NDB0V2 IO20NDB0V2 IO20PDB0V2 IO32NDB0V3 IO32PDB0V3
896-Pin FBGA Pin Number J16 J17 J18 J19 J20 J21 J22 J23 J24 J25 J26 J27 J28 J29 J30 K1 K2 K3 K4 K5 K6 K7 K8 K9 K10 K11 K12 K13 K14 K15 K16 K17 K18 K19 K20 AGLE3000 Function IO42PDB1V0 IO44NDB1V0 IO44PDB1V0 IO54NDB1V1 IO54PDB1V1 IO76NPB1V4 VCC VCCPLB VCCIB2 IO90PDB2V1 IO90NDB2V1 GBB2/IO83PDB2V0 IO83NDB2V0 IO91PDB2V1 IO91NDB2V1 IO288NDB7V1 IO288PDB7V1 IO304NDB7V3 IO304PDB7V3 GAB2/IO308PDB7V4 IO308NDB7V4 IO301PDB7V3 IO301NDB7V3 GAC2/IO307PPB7V4 VCC IO04PPB0V0 VCCIB0 VCCIB0 VCCIB0 VCCIB0 VCCIB1 VCCIB1 VCCIB1 VCCIB1 IO76PPB1V4
896-Pin FBGA Pin Number K21 K22 K23 K24 K25 K26 K27 K28 K29 K30 L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12 L13 L14 L15 L16 L17 L18 L19 L20 L21 L22 L23 L24 L25 AGLE3000 Function VCC IO78PPB1V4 IO88NDB2V0 IO88PDB2V0 IO94PDB2V1 IO94NDB2V1 IO85PDB2V0 IO85NDB2V0 IO93PDB2V1 IO93NDB2V1 IO286NDB7V1 IO286PDB7V1 IO298NDB7V3 IO298PDB7V3 IO283PDB7V1 IO291NDB7V2 IO291PDB7V2 IO293PDB7V2 IO293NDB7V2 IO307NPB7V4 VCC VCC VCC VCC VCC VCC VCC VCC VCC VCC IO78NPB1V4 IO104NPB2V2 IO98NDB2V2 IO98PDB2V2 IO87PDB2V0
3 -2 2
v1.1
IGLOOe Packaging
896-Pin FBGA Pin Number L26 L27 L28 L29 L30 M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 M14 M15 M16 M17 M18 M19 M20 M21 M22 M23 M24 M25 M26 M27 M28 M29 M30 AGLE3000 Function IO87NDB2V0 IO97PDB2V1 IO101PDB2V2 IO103PDB2V2 IO119NDB3V0 IO282NDB7V1 IO282PDB7V1 IO292NDB7V2 IO292PDB7V2 IO283NDB7V1 IO285PDB7V1 IO287PDB7V1 IO289PDB7V1 IO289NDB7V1 VCCIB7 VCC GND GND GND GND GND GND GND GND VCC VCCIB2 NC IO104PPB2V2 IO102PDB2V2 IO102NDB2V2 IO95PDB2V1 IO97NDB2V1 IO101NDB2V2 IO103NDB2V2 IO119PDB3V0
896-Pin FBGA Pin Number N1 N2 N3 N4 N5 N6 N7 N8 N9 N10 N11 N12 N13 N14 N15 N16 N17 N18 N19 N20 N21 N22 N23 N24 N25 N26 N27 N28 N29 N30 P1 P2 P3 P4 P5 AGLE3000 Function IO276PDB7V0 IO278PDB7V0 IO280PDB7V0 IO284PDB7V1 IO279PDB7V0 IO285NDB7V1 IO287NDB7V1 IO281NDB7V0 IO281PDB7V0 VCCIB7 VCC GND GND GND GND GND GND GND GND VCC VCCIB2 IO106NDB2V3 IO106PDB2V3 IO108PDB2V3 IO108NDB2V3 IO95NDB2V1 IO99NDB2V2 IO99PDB2V2 IO107PDB2V3 IO107NDB2V3 IO276NDB7V0 IO278NDB7V0 IO280NDB7V0 IO284NDB7V1 IO279NDB7V0
896-Pin FBGA Pin Number P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16 P17 P18 P19 P20 P21 P22 P23 P24 P25 P26 P27 P28 P29 P30 R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 AGLE3000 Function GFC1/IO275PDB7V0 GFC0/IO275NDB7V0 IO277PDB7V0 IO277NDB7V0 VCCIB7 VCC GND GND GND GND GND GND GND GND VCC VCCIB2 GCC1/IO112PDB2V3 IO110PDB2V3 IO110NDB2V3 IO109PPB2V3 IO111NPB2V3 IO105PDB2V2 IO105NDB2V2 GCC2/IO117PDB3V0 IO117NDB3V0 GFC2/IO270PDB6V4 GFB1/IO274PPB7V0 VCOMPLF GFA0/IO273NDB6V4 GFB0/IO274NPB7V0 IO271NDB6V4 GFB2/IO271PDB6V4 IO269PDB6V4 IO269NDB6V4 VCCIB7
v1.1
3 - 23
Package Pin Assignments
896-Pin FBGA Pin Number R11 R12 R13 R14 R15 R16 R17 R18 R19 R20 R21 R22 R23 R24 R25 R26 R27 R28 R29 R30 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 AGLE3000 Function VCC GND GND GND GND GND GND GND GND VCC VCCIB2 GCC0/IO112NDB2V3 GCB2/IO116PDB3V0 IO118PDB3V0 IO111PPB2V3 IO122PPB3V1 GCA0/IO114NPB3V0 VCOMPLC GCB1/IO113PPB2V3 IO115NPB3V0 IO270NDB6V4 VCCPLF GFA2/IO272PPB6V4 GFA1/IO273PDB6V4 IO272NPB6V4 IO267NDB6V4 IO267PDB6V4 IO265PDB6V3 IO263PDB6V3 VCCIB6 VCC GND GND GND GND
896-Pin FBGA Pin Number T16 T17 T18 T19 T20 T21 T22 T23 T24 T25 T26 T27 T28 T29 T30 U1 U2 U3 U4 U5 U6 U7 U8 U9 U10 U11 U12 U13 U14 U15 U16 U17 U18 U19 U20 AGLE3000 Function GND GND GND GND VCC VCCIB3 IO109NPB2V3 IO116NDB3V0 IO118NDB3V0 IO122NPB3V1 GCA1/IO114PPB3V0 GCB0/IO113NPB2V3 GCA2/IO115PPB3V0 VCCPLC IO121PDB3V0 IO268PDB6V4 IO264NDB6V3 IO264PDB6V3 IO258PDB6V3 IO258NDB6V3 IO257PPB6V2 IO261PPB6V3 IO265NDB6V3 IO263NDB6V3 VCCIB6 VCC GND GND GND GND GND GND GND GND VCC
896-Pin FBGA Pin Number U21 U22 U23 U24 U25 U26 U27 U28 U29 U30 V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12 V13 V14 V15 V16 V17 V18 V19 V20 V21 V22 V23 V24 V25 AGLE3000 Function VCCIB3 IO120PDB3V0 IO128PDB3V1 IO124PDB3V1 IO124NDB3V1 IO126PDB3V1 IO129PDB3V1 IO127PDB3V1 IO125PDB3V1 IO121NDB3V0 IO268NDB6V4 IO262PDB6V3 IO260PDB6V3 IO252PDB6V2 IO257NPB6V2 IO261NPB6V3 IO255PDB6V2 IO259PDB6V3 IO259NDB6V3 VCCIB6 VCC GND GND GND GND GND GND GND GND VCC VCCIB3 IO120NDB3V0 IO128NDB3V1 IO132PDB3V2 IO130PPB3V2
3 -2 4
v1.1
IGLOOe Packaging
896-Pin FBGA Pin Number V26 V27 V28 V29 V30 W1 W2 W3 W4 W5 W6 W7 W8 W9 W10 W11 W12 W13 W14 W15 W16 W17 W18 W19 W20 W21 W22 W23 W24 W25 W26 W27 W28 W29 W30 AGLE3000 Function IO126NDB3V1 IO129NDB3V1 IO127NDB3V1 IO125NDB3V1 IO123PDB3V1 IO266NDB6V4 IO262NDB6V3 IO260NDB6V3 IO252NDB6V2 IO251NDB6V2 IO251PDB6V2 IO255NDB6V2 IO249PPB6V1 IO253PDB6V2 VCCIB6 VCC GND GND GND GND GND GND GND GND VCC VCCIB3 IO134PDB3V2 IO138PDB3V3 IO132NDB3V2 IO136NPB3V2 IO130NPB3V2 IO141PDB3V3 IO135PDB3V2 IO131PDB3V2 IO123NDB3V1
896-Pin FBGA Pin Number Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9 Y10 Y11 Y12 Y13 Y14 Y15 Y16 Y17 Y18 Y19 Y20 Y21 Y22 Y23 Y24 Y25 Y26 Y27 Y28 Y29 Y30 AGLE3000 Function IO266PDB6V4 IO250PDB6V2 IO250NDB6V2 IO246PDB6V1 IO247NDB6V1 IO247PDB6V1 IO249NPB6V1 IO245PDB6V1 IO253NDB6V2 GEB0/IO235NPB6V0 VCC VCC VCC VCC VCC VCC VCC VCC VCC VCC IO142PPB3V3 IO134NDB3V2 IO138NDB3V3 IO140NDB3V3 IO140PDB3V3 IO136PPB3V2 IO141NDB3V3 IO135NDB3V2 IO131NDB3V2 IO133PDB3V2
v1.1
3 - 25
Package Pin Assignments
Part Number and Revision Date
Part Number 51700096-003-1 Revised June 2008
List of Changes
The following table lists critical changes that were made in the current version of the chapter. Previous Version v1.0 (January 2008) Changes in Current Version (v1.1) The naming conventions changed for the following pins in the "484-Pin FBGA" for the A3GLE600: Pin Number J19 K20 M2 N1 N4 P3 Advance v0.4 (December 2007) Advance v0.3 (September 2007) New Function Name IO45PPB2V1 IO45NPB2V1 IO114NPB6V1 IO114PPB6V1 GFC2/IO115PPB6V1 IO115NPB6V1 N/A Page 3-6
This document was previously in datasheet Advance v0.4. As a result of moving to the handbook format, Actel has restarted the version numbers. The new version number is v1.0. The "484-Pin FBGA" table for AGLE3000 is new. The "896-Pin FBGA" package and table for AGLE3000 is new.
4-11 4-16
3 -2 6
v1.1
IGLOOe Packaging
Datasheet Categories
Categories
In order to provide the latest information to designers, some datasheets are published before data has been fully characterized. Datasheets are designated as "Product Brief," "Advance," "Preliminary," and "Production." The definition of these categories are as follows:
Product Brief
The product brief is a summarized version of a datasheet (advance or production) and contains general product information. This document gives an overview of specific device and family information.
Advance
This version contains initial estimated information based on simulation, other products, devices, or speed grades. This information can be used as estimates, but not for production. This label only applies to the DC and Switching Characteristics chapter of the datasheet and will only be used when the data has not been fully characterized.
Preliminary
The datasheet contains information based on simulation and/or initial characterization. The information is believed to be correct, but changes are possible.
Unmarked (production)
This version contains information that is considered to be final.
Export Administration Regulations (EAR)
The products described in this document are subject to the Export Administration Regulations (EAR). They could require an approved export license prior to export from the United States. An export includes release of product or disclosure of technology to a foreign national inside or outside the United States.
Actel Safety Critical, Life Support, and High-Reliability Applications Policy
The Actel products described in this advance status document may not have completed Actel's qualification process. Actel may amend or enhance products during the product introduction and qualification process, resulting in changes in device functionality or performance. It is the responsibility of each customer to ensure the fitness of any Actel product (but especially a new product) for a particular purpose, including appropriateness for safety-critical, life-support, and other high-reliability applications. Consult Actel's Terms and Conditions for specific liability exclusions relating to life-support applications. A reliability report covering all of Actel's products is available on the Actel website at http://www.actel.com/documents/ORT_Report.pdf. Actel also offers a variety of enhanced qualification and lot acceptance screening procedures. Contact your local Actel sales office for additional reliability information.
v1.1
3 - 27
Actel and the Actel logo are registered trademarks of Actel Corporation. All other trademarks are the property of their owners.
w w w. a c t e l . c o m
Actel Corporation 2061 Stierlin Court Mountain View, CA 94043-4655 USA Phone 650.318.4200 Fax 650.318.4600 Actel Europe Ltd. River Court,Meadows Business Park Station Approach, Blackwater Camberley Surrey GU17 9AB United Kingdom Phone +44 (0) 1276 609 300 Fax +44 (0) 1276 607 540 Actel Japan EXOS Ebisu Buillding 4F 1-24-14 Ebisu Shibuya-ku Tokyo 150 Japan Phone +81.03.3445.7671 Fax +81.03.3445.7668 http://jp.actel.com Actel Hong Kong Room 2107, China Resources Building 26 Harbour Road Wanchai, Hong Kong Phone +852 2185 6460 Fax +852 2185 6488 www.actel.com.cn
51700096-005-5/10.08


▲Up To Search▲   

 
Price & Availability of AGLE3000V2-FFG896

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X